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Abstract

Optical control of interactions in ultracold gases opens new fields of research by cre-

ating “designer” interactions with high spatial and temporal resolution. However,

previous optical methods using single optical fields generally suffer from atom loss

due to spontaneous scattering. This thesis reports new optical methods, employ-

ing two optical fields to control interactions in ultracold gases, while suppressing

spontaneous scattering by quantum interference. In this dissertation, I will discuss

the experimental demonstration of two optical field methods to control narrow and

broad magnetic Feshbach resonances in an ultracold gas of 6Li atoms. The narrow

Feshbach resonance is shifted by 30 times its width and atom loss suppressed by de-

structive quantum interference. Near the broad Feshbach resonance, the spontaneous

lifetime of the atoms is increased from 0.5 ms for single field methods to 400 ms us-

ing our two optical field method. Furthermore, I report on a new theoretical model,

the continuum-dressed state model, that calculates the optically induced scattering

phase shift for both the broad and narrow Feshbach resonances by treating them

in a unified manner. The continuum-dressed state model fits the experimental data

both in shape and magnitude using only one free parameter. Using the continuum-

dressed state model, I illustrate the advantages of our two optical field method over

single-field optical methods.

iv



For the cutest munchkin in the town of Cary

v



Contents

Abstract iv

List of Tables xi

List of Figures xii

Acknowledgements xvi

1 Introduction 1

1.1 Magnetic Feshbach resonances in ultracold atoms . . . . . . . . . . . 3

1.2 Why do we need optical control of interactions? . . . . . . . . . . . . 6

1.3 Optical control of interactions in ultracold atoms . . . . . . . . . . . 8

1.4 Advantages of our two-field optical methods . . . . . . . . . . . . . . 12

1.5 Dissertation organization . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Theory of Collisional Feshbach Resonances 17

2.1 Feshbach resonance in 6Li . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Continuum-dressed state treatment of Feshbach resonance . . . . . . 23

2.3 Dressed continuum state |Eky . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Magnetic Feshbach resonance induced phase shift ∆̃ . . . . . . 32

2.3.2 Zero energy scattering length a . . . . . . . . . . . . . . . . . 33

2.3.3 Effective range re . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Dressed bound state |Ey . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Properties of dressed states |Ey and |Eky . . . . . . . . . . . . . . . . 40

vi



2.5.1 Orthogonality of |Ey and |Eky . . . . . . . . . . . . . . . . . . 40

2.5.2 Z(B) - Singlet character in dressed bound state |Ey . . . . . . 44

2.5.3 C(B) - Total probability of |g1y to be in the dressed continuum 47

2.5.4 Z(B) and C(B) near the broad and narrow Feshbach resonance
in 6Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5.5 Molecular binding energy Em . . . . . . . . . . . . . . . . . . 54

2.6 Summary: Physical significance of the dressed states |Ey and |Eky . . 58

2.6.1 Above Feshbach resonance - BCS side . . . . . . . . . . . . . . 58

2.6.2 Below Feshbach resonance - BEC side . . . . . . . . . . . . . . 59

3 Continuum-Dressed State Model 61

3.1 Two-field optical method: Level scheme . . . . . . . . . . . . . . . . . 62

3.2 Bare-state basis and continumm-dressed state basis . . . . . . . . . . 63

3.3 Optical control: Continuum-dressed basis . . . . . . . . . . . . . . . . 65

3.3.1 Adiabatic approximation . . . . . . . . . . . . . . . . . . . . . 67

3.4 Scattering state wave function . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Evaluating the energy denominator DpE,EKq . . . . . . . . . . . . . 73

3.5.1 Dressed bound state shift IE . . . . . . . . . . . . . . . . . . . 76

3.5.2 Dressed continuum state shift IEK . . . . . . . . . . . . . . . . 78

3.6 Evaluation of the optically induced phase shift φ . . . . . . . . . . . . 88

3.7 Evaluation of the total phase shift δ . . . . . . . . . . . . . . . . . . . 90

4 Continuum-Dressed Model Predictions 92

4.1 Two-body loss rate constant K2 . . . . . . . . . . . . . . . . . . . . . 92

4.2 Procedure for calculating K2 . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Two-body loss rate K2 near broad Feshbach resonance . . . . . . . . 97

4.3.1 Two-body loss rate K2 for different Rabi frequencies Ω2 . . . . 100

4.3.2 Two-body loss rate K2 vs Rabi frequency Ω1 . . . . . . . . . . 101

vii



4.3.3 Two-body loss rate K2 vs ratio of Rabi frequencies Ω1{Ω2 . . . 101

4.3.4 Two-body loss rate K2 vs detuning ∆2 . . . . . . . . . . . . . 102

4.4 Two-body loss rate K2 near narrow Feshbach resonance . . . . . . . . 104

4.4.1 Shift of the narrow Feshbach resonance vs Rabi frequency Ω1 . 105

4.4.2 EIT loss suppression near narrow Feshbach resonance . . . . . 106

4.5 Zero energy scattering length a . . . . . . . . . . . . . . . . . . . . . 108

4.5.1 Zero energy scattering length a near the broad Feshbach reso-
nance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.5.2 Zero energy scattering length a near the narrow Feshbach res-
onance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.6 Effective range re . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.7 Two-field optical method near the narrow Feshbach resonance . . . . 116

4.8 Two-field optical method near the broad Feshbach resonance . . . . . 119

4.9 Evaluation of optically induced atom loss from K2 . . . . . . . . . . . 122

5 Experimental Methods 125

5.1 Laser cooling and trapping of atoms . . . . . . . . . . . . . . . . . . . 125

5.1.1 6Li oven - Generating the atoms . . . . . . . . . . . . . . . . . 126

5.1.2 Zeeman slower and the “slower” beam - Initial cooling . . . . 126

5.1.3 Magneto-optical trap - Precooling . . . . . . . . . . . . . . . . 128

5.1.4 Far off-resonance trap (FORT) - Evaporative cooling . . . . . 129

5.1.5 Imaging the atom cloud . . . . . . . . . . . . . . . . . . . . . 132

5.2 Experimental setup for two-field optical method . . . . . . . . . . . . 134

5.2.1 Basic experimental setup . . . . . . . . . . . . . . . . . . . . . 135

5.2.2 Frequency stabilization of lasers using PDH lock . . . . . . . . 138

5.2.3 Locking the FP cavity using iodine saturation absorption spec-
troscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2.4 Frequency offset lock between the reference and the control laser142

viii



5.2.5 Spectral filtering of optical fields . . . . . . . . . . . . . . . . . 145

5.2.6 Illuminating the atoms with optical fields . . . . . . . . . . . . 146

5.3 Measurement of density and temperature of the atom cloud . . . . . 147

5.3.1 Measurement of trap frequencies of atoms in a CO2 dipole trap 147

5.3.2 Measurement of the trap oscillation frequencies for the com-
bined CO2 dipole and red trap . . . . . . . . . . . . . . . . . 149

5.3.3 Measurement of temperature of the atom cloud . . . . . . . . 152

5.3.4 Measurement of density of the atom cloud . . . . . . . . . . . 154

5.4 Determination of the Rabi frequencies . . . . . . . . . . . . . . . . . 155

5.5 Measurement of the transition frequencies . . . . . . . . . . . . . . . 156

5.6 Measurement of three-body recombination loss near the narrow Fesh-
bach resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6 Results and Conclusion 162

6.1 Shifting the narrow Feshbach resonance using a single-optical field . . 164

6.2 Comparison of single-field loss data with the continuum-dressed state
model near the narrow Feshbach resonance . . . . . . . . . . . . . . . 169

6.3 Two-field loss suppression near the narrow Feshbach resonance . . . . 170

6.4 Comparison of two-field loss suppression data with the continuum-
dressed state model near the narrow Feshbach resonance . . . . . . . 173

6.5 Two-field loss suppression near broad Feshbach resonance . . . . . . . 175

6.6 Comparison of two-field loss suppression data with the continuum-
dressed state model near the broad Feshbach resonance . . . . . . . . 177

6.7 Increasing the spontaneous lifetime of atoms near the broad
Feshbach resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.8 Summary and future experiments . . . . . . . . . . . . . . . . . . . . 179

A Evaluation of phase shift ∆ due to magnetic Feshbach resonance 181

B Evaluation of contour integral for solving ĨbEk near the broad Fesh-
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1

Introduction

Controlling interactions in ultracold gases is essential for emulating intriguing sys-

tems in nature, ranging from exotic nuclear matter such as neutron stars to high

temperature superconductors. Ultracold gases with tunable interactions are studied

by utilizing collisional (Feshbach) resonances [1]. A Feshbach resonance occurs when

the energy of the two-atom scattering state is tuned into resonance with a molecular

bound state. Typically, external magnetic fields are used to control interactions in

an ultracold gas near Feshbach resonances. However, in order to control interactions

with high spatial and temporal resolution, the use of optical techniques becomes

inevitable. Optical control of interactions in an ultracold gas offers tantalizing pos-

sibilities for creating “designer” two-body interactions. Unfortunately, previously

reported optical methods [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] suffer from spontaneous

scattering which limits the tunability of interactions. This dissertation reports on the

demonstration of new optical methods that uses two optical fields to control interac-

tions near collisional (Feshbach) resonances while suppressing spontaneous scattering

by destructive quantum interference.

In order to understand optical control of two-body scattering parameters in an

1



ultracold gas, we begin with the discussion of the scattering amplitude in a collision

between two particles. At ultracold temperatures, low energy s-wave collisions are

dominant. The s-wave scattering amplitude

fpkq “
e2 i δpkq ´ 1

2ik
“

1

k cot δpkq ´ ik
, (1.1)

where δpkq is the relative momentum dependent scattering phase shift.

In early studies of low energy s-wave scattering in nuclear physics, Schwinger [13,

14] used variational methods to derive the relationship between the scattering phase

shift δpkq and the relative momentum k as k Ñ 0

k cot δpkq u ´
1

a
`
k2

2
re, (1.2)

where a is the zero energy s-wave scattering length and re is the effective range.

The real part of a determines the zero-energy elastic cross section and the imaginary

part of a determines the inelastic cross section. The two field optical method [15]

induces narrow optical features in the scattering phase shift δpkq thereby allowing

“designer” control of elastic scattering length and inelastic loss. Furthermore, the

relative kinetic energy ~2 k2{m of the colliding particles leads to energy-dependent

optical detuning of these narrow features, producing a rapid k2 dependence in the

scattering phase shift δpkq, allowing the tunability of effective range.

By controlling both the zero energy scattering length and the effective range, our

two-optical field methods will open new fields of research, which include the sys-

tematic study of non-equilibrium phenomena in strongly correlated Bose and Fermi

gases [16], a new paradigm for neutron matter, where the s-wave scattering length,

the effective range, and the interparticle spacing are in the correct proportions [17],

and the creation of new scale-invariant dimer pairs using scattering lengths that vary

linearly in space [18]. Control of the effective range may stabilize trimer formation

near p-wave resonances [19].

2



Implementation of optical control methods requires an understanding of the

optically-induced level structure and energy shifts, which depend on the relative mo-

mentum of a colliding atom pair. I present a new theoretical model, the continuum-

dressed state model, which provides a comprehensive treatment for calculating the

scattering phase shift, taking into account the relative momentum dependence of the

colliding atoms. The predicted relative-momentum averaged loss spectra agree in

shape and magnitude with data for both broad and narrow resonances, substantiat-

ing the new theoretical approach. These results pave the way for predicting two-body

scattering parameters for experiments employing optically controlled interactions.

1.1 Magnetic Feshbach resonances in ultracold atoms

A Feshbach resonance in a ultracold gas occurs when the energy of a pair of unbound

colliding atoms is degenerate with a quasi-bound molecular state [1]. At a Feshbach

resonance, the scattering length diverges, thereby leading to strong interactions. At

resonance, the scattering length no longer plays any role in the description of the

gas. The only length scales that remain are the average distance between the atoms

and the thermal De Broglie wavelength. This technique of tuning the interactions

of atoms near a Feshbach resonance using external magnetic fields is denoted as

magnetic Feshbach resonance (MFR).

Fig. 1.1 (a,b) illustrates the concept of a magnetic Feshbach resonance. The

unbound colliding atom pair resides in an energetically allowed scattering channel

|T, ky called the open channel, where k indicates the relative momentum of the

colliding atom pair and T indicates the spin state of the colliding atom pair. The

molecular bound state |g1y, which is not energetically accessible, resides in the the

closed channel. If the open channel and closed channels have different magnetic

moments, the open and closed channels can be tuned using external magnetic fields

to be degenerate creating a Feshbach resonance at the resonance magnetic field Bres,
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Figure 1.1: Magnetic Feshbach resonance arises due to the coupling between the
molecular bound state |g1y and the scattering continuum |T, ky. Down arrow indi-
cates that increasing the magnetic field tunes the energy of the scattering continuum
downward. (a) At B “ 0, the energetically accessible scattering state |T, ky (open
channel) of the unbound free atom pair is higher in energy than the molecular bound
state. (b) At B “ Bres, the molecular bound state is degenerate with the scattering
continuum which leads to Feshbach resonance due to the presence of hyperfine cou-
pling VHF between them. (c) At B ă Bres, BEC side of the Feshbach resonance (d)
At B ą Bres, BCS side of the Feshbach resonance.

B < Bres B = Bres B > Bres
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Figure 1.2: Zero energy scattering length a near a magnetic Feshbach resonance.
When B “ Bres, the scattering length diverges and leads to strong interactions.
When B ă Bres, BEC side of the Feshbach resonance, where the scattering length is
positive and the interactions are repulsive. When B ą Bres, BCS side of the Feshbach
resonance, where the scattering length is negative and interactions are attractive.
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due to the hyperfine coupling between the open and closed channels.

Fig. 1.2 shows zero energy scattering length near a magnetic Feshbach resonance.

At the Feshbach resonance B “ Bres, the scattering length diverges leading to strong

interactions. For magnetic fields below the resonance magnetic field, B ă Bres,

the scattering length is positive and interactions are repulsive. For magnetic fields

above the resonance magnetic field B ą Bres, the scattering length is negative and

interactions are attractive.

In Fermi gases, when the scattering length is positive, unbound atom pairs with

opposite spins can form a BEC of molecules [20, 21] by three-body recombination and

populates the molecular bound state |g1y, Fig. 1.1(c). This regime is called the BEC

side of the resonance. Above the Feshbach resonance, when the scattering length is

negative, unbound free atom pairs in the presence of other fermions can form Cooper

pairs due to the presence of weak attractions between them, Fig. 1.1(d). This regime

is called the BCS side of the resonance, as the BCS theory of superconductivity is

required to explain the physics in this regime.

Over the past several years magnetic Feshbach resonances have been extensively

used and have yielded several important observations in the study of ultracold gases

with tunable interactions [1]. In Bose gases, Feshbach resonances were used to create

an atomic Bose-Einstein condensate (BEC) of 85Rb [22] and 133Cs [23]. Feshbach

resonances were used to tune the interaction on a stable BEC from repulsive to

attractive resulting in condensate collapse and has led to the observation of bright

matter-wave solitons in 7Li [24, 25]. Ultracold molecules of 85Rb were produced

using oscillatory magnetic fields [26] near a Feshbach resonance. In addition, using

Feshbach resonances to turn off interactions near a zero-crossing of the scattering

length is important in fields such as atom interferometry. Using a non-interacting

BEC, long lived Bloch oscillations have been observed in 133Cs [27] and 39K [28].

More recently, Feshbach resonances in ultracold cesium were used to observe Efimov
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trimers [29, 30], a theoretical prediction [31] which was made over half a century ago,

that would have been impossible had it not been for the ability to magnetically tune

the interactions.

In Fermi gases, pioneering work utilizing Feshbach resonances has been done

by our group [32, 33, 34], including the first observation of a strongly-interacting

degenerate Fermi gas in 6Li in 2003 [35, 32]. Other pioneering works using Fesh-

bach resonances in 6Li include the observation of vortices and superfluidity [36, 37],

superfluid phase transition [38], sound propagation [39], universal quantum viscos-

ity [34], and evidence of collective excitations near a BEC-BCS crossover [40, 41].

A Bose-Einstein condensate of 6Li2 ultracold molecules was produced using three-

body recombination near a Feshbach resonance [42]. Using Feshbach resonances, a

strongly-interacting Fermi gas was realized in 40K by Jin’s group at JILA [43]. The

same research group also demonstrated the creation of a BEC of molecules in 40K by

adiabatically sweeping the magnetic field through the Feshbach resonance into the

BEC regime [44].

1.2 Why do we need optical control of interactions?

Although magnetically tunable interactions near Feshbach resonances have been in-

strumental in driving the burgeoning field of ultracold atoms into uncharted ter-

ritories, it suffers from some drawbacks. One of the main disadvantages of using

magnetic fields to control interactions is the lack of spatial resolution since large and

bulky coils are used to generate the required high magnetic fields. Therefore, it is

not possible to have spatially selective control of interactions within an atom cloud

which is only a few hundred microns in size.

For example, exotic atomic systems such as a strongly interacting system sand-

wiched between two non-interacting systems, cannot be realized using magnetic Fes-

hbach resonances. However, as the size of optical beams can be modulated on a
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sub-wavelength scale, optical fields can provide high-resolution spatial control of in-

teractions in ultracold gases. Encouraged by the potential of using optical beams to

induce spatial variations in the scattering length, many theoretical proposals have

been put forth, including the observation of Hawking radiation from acoustic black

holes [45] and controllable soliton emission in atomic Bose-Einstein condensates [46].

Another disadvantage of using magnetic fields to control interactions is its slow

tunability. Magnetic fields in general are generated by driving a current through

a coil. The high inductance of these coils limits the rate at which the magnetic

field can be changed. Several groups [26, 47, 48] have demonstrated tunabilities

on a time scale of sub-milliseconds by using a set of two coils, a high inductance

primary coil and a low inductance auxiliary coil. The primary coil generates the

high magnetic field but does not tune the magnetic field. The auxiliary coil is

used for tuning the magnetic field. However, tuning interactions in the timescale

of milliseconds is still insufficient to pursue experiments towards studies of non-

equilibrium thermodynamics in interacting Fermi gases which involves rapid changes

in the system parameters.

For example, the natural time scale in a Fermi gas is the “Fermi time”, τF , which

is defined as the time taken by a fermion with the Fermi velocity vF to move a De

Broglie wavelength λF . For a Fermi Energy, EF « kB ˆ 1µK, the Fermi time is

in the order of ~{EF „ 10µs [49]. In order to control interactions on a time scale

faster than the Fermi time, the use of optical techniques becomes inevitable. Optical

fields can be used to tune interactions in a few nanoseconds as the tuning rate is

only limited by the switching time of an optical switch, such as an acousto-optical

or electro-optical modulator.
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1.3 Optical control of interactions in ultracold atoms

The concept of using optical methods to control interactions was proposed even

before the realization of a Bose-Einstein condensate [50, 51]. As we saw from the

illustration for a magnetic Feshbach resonance in Fig. 2.1, the change in scattering

length in a unbound pair of atoms was brought by coupling the atom pair colliding

state to a bound molecular state. In a magnetic Feshbach resonance, the bound

state is chosen to be one of the vibrational states in the ground potential of the

closed channel. Similarly, the scattering length can also be changed by coupling

unbound colliding atom pairs to the electronically excited bound vibrational state

of the open channel by applying laser light Fig. 1.3. The phenomenon by which

unbound colliding atom pairs can be coupled to a bound state by the application of

light is called photoassociation [52]. One of the very first demonstrations of using

optical fields to control interactions utilized a photoassociation resonance [4]. This

resonance is also called as optical Feshbach resonance (OFR).

Figure 1.3: Basic level scheme for optical Feshbach resonance (OFR) to control
interactions as illustrated in Ref. [4, 6]. An optical field with frequency ω1 and Rabi
frequency Ω1 couples the scattering continuum |T, ky in the open channel to the
bound excited state |ey in the open channel.

Fig. 1.3 illustrates the concept of optical Feshbach resonance . In OFR, laser light
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of frequency ω1 and Rabi frequency Ω1 couples the unbound free atom pairs in the

open channel to the excited vibrational state of the closed channel. Note that this

technique completely ignores the magnetic Feshbach resonance and does not utilize

the bound state in the closed channel. It is a stand alone optical technique that

only acts on the open channel. The very first observation of OFR was reported by

Fatemi and coworkers in an ultracold gas of sodium vapor [4]. However, they did

not demonstrate the tunability of the scattering length associated with an optical

Feshbach resonance.

The first demonstration of tuning the scattering length using OFR was reported

by M. Theis and coworkers [6] in a 87Rb Bose condensate using the scheme illustrated

in Fig. 1.3. They were able to tune the scattering length from 10 a0 to 190 a0, where

a0 is the Bohr radius. One of the major drawbacks of optical control techniques is

atom loss through spontaneous scattering. As atoms are excited from the ground

state of the open channel to the excited vibrational bound state of the open channel,

they spontaneously decay to all allowed lower energy vibrational states leading to

atom loss. The atom loss is characterized by the two-body loss rate coefficient K2

given in cm3/s. M.Theis and coworkers were able to attain a K2 « 10´10 cm3/s. To

put that number into perspective, if we have a Bose-Einstein condensate at typical

densities of 1014 cm´3, the lifetime of the atoms would be 100µs. In other words,

experiments using OFR should be done within 100µs, which is a severe limitation

on the proposed next generation experiments.

In order to increase the lifetime of the atoms by suppressing spontaneous scat-

tering, M.Theis and coworkers adopted a two-field technique that used two-photon

Raman coupling [7] as illustrated in Fig. 1.4. In a Raman-coupled OFR, in addition

to the ω1 optical field, a second optical field with frequency ω2 and Rabi frequency

Ω2 couples the ground vibrational state |Gy in the open channel to the excited vibra-

tional state in the open channel. Both the optical fields, ω1 and ω2 are far detuned
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Figure 1.4: Basic level scheme for Raman-coupled optical Feshbach resonance
(OFR) to control interactions as illustrated in Ref. [7]. An optical field with frequency
ω1 and Rabi frequency Ω1 couples the scattering continuum |T, ky in the open channel
to the bound excited state |ey in the open channel. A second optical field with
frequency ω2 and Rabi frequency Ω2 couples the ground molecular state |Gy in the
open channel to the bound excited state |ey in the open channel. Both optical fields
are detuned from the excited state and absorption occurs due to two-photon Raman
coupling.

from the excited state. Two-photon Raman coupling is a well known process in

atomic physics where atoms absorb two-photons to couple from the ground state to

the excited state through a virtual state. Compared to the experiment done using a

single optical field in Ref. [6], M.Theis and coworkers were not able to demonstrate

net improvement in the lifetime of the atoms for a given tunability in the scattering

length.

A major breakthrough in this field occurred when Bauer and coworkers used an

optical field acting on the closed channel to tune the scattering length near a magnetic

Feshbach resonance [9]. The basic level scheme for this technique is illustrated in

Fig. 1.5. A single optical field with frequency ω1, Rabi frequency Ω1, and detuning

∆ couples the ground vibrational state |g1y in the closed channel to the excited

vibrational state |ey in the closed channel. Note that the molecular bound state |g1y

is responsible for the Feshbach resonance.
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The ω1 field creates a light shift Σopt proportional to Ω2
1{4 ∆ of the state |g1y

thereby changing the position of the magnetic Feshbach resonance. By using mag-

Figure 1.5: Level scheme for single-field optical method to control interactions
as illustrated in Ref. [9]. An optical field with frequency ω1 and Rabi frequency Ω1

couples the ground vibrational state |g1y in the closed channel to the bound excited
state |ey in the closed channel.

netic fields, the open channel is initially tuned near degeneracy with state |g1y. The

ω1 field is then applied to tune the state |g1y to be degenerate with the open channel.

Bauer and coworkers were able to demonstrate tunability in the scattering length of

200 a0 with a two-body loss rate constant K2 « 10´11cm3/s, an order of improvement

compared to Ref. [6, 7].

Note that, unlike OFR, the optical fields in this technique does not interact

directly with the free atoms in the open channel. The optical fields interact only

with the closed channel and is merely involved in creating a light shift of the state

|g1y, which is responsible for the Feshbach resonance. Also, this technique is not a

stand alone optical technique to control interactions. It uses optical fields to tune

the interactions near a magnetic Feshbach position by light shifting the state |g1y.

For the single-field optical technique like the one used in Ref. [9], the loss rate is

proportional to Ω2
1{4 ∆2 and the shift is proportional to Ω2

1{4 ∆. Therefore, larger
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detunings can improve the lifetime of the atoms at the cost of reduced tunability.

In a follow up experiment [12], Bauer and coworkers demonstrated an order of im-

provement in two body loss rate constant K2 « 10´12 cm3/s for the same tunability

of 200 a0 by using an optical field with large detuning and high intensity. However,

intense optical fields can create unwanted dipole trapping potential of the atoms,

which limits the usability of this technique. Following Bauer and coworkers, a simi-

lar experiment was done in Fermi gases by Fu and coworkers in ultracold 40K [10].

More recently, Clark and coworkers used ultracold cesium atoms to demonstrate

that by tuning the wavelength of the ω1 laser (Fig. 1.5) to the so called “magic”

wavelength, the effect of optical dipole potential on the atoms can be completely

nullified [11]. By choosing the “magic” wavelength in between the D1 and D2 atomic

transition lines of cesium, Ref. [11] showed the net optical dipole potential on the

atoms is canceled by quantum interference. Note that this technique is exactly similar

to the one reported in Ref. [12], minus the effect of the dipole trapping potential.

Ref. [11] demonstrated light shift of the Feshbach resonance by 38 mG, corresponding

to a scattering length change from 0 a0 upto 180 a0 with a lifetime of 100 ms. They

further demonstrated spatial and temporal control of scattering length by monitoring

condensate dynamics and using intermodulation spectroscopy [26], respectively.

1.4 Advantages of our two-field optical methods

The fundamental problem with the use of single-field optical methods is spontaneous

scattering, which limits the tunability of interactions. As we saw in the previous

section, single-field methods relies on large detunings to suppress atom loss. Although

this approach can work in atomic species with very narrow Feshbach resonances, it is

not generally applicable to any moderate width Feshbach resonances. For example,

Ref. [11] utilized a d-wave Feshbach resonance in cesium with a resonance width

of 157 mG. Using a far-detuned single-optical field, Ref. [11] demonstrated shifting
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of the Feshbach resonance by tens of mG with a lifetime of 100 ms. However, to

control interactions in atomic species like 6Li which has a broad Feshbach resonance

with a width of 300 G cannot be controlled by a single field. The only way to tune

interactions in 6Li is to use a near resonant light. However, as we have seen from our

prior discussion, near resonant light creates atom loss by spontaneous scattering. So

the question is, how do we use near resonant light to create a large change in the

scattering length and suppress atom loss at the same time?

Figure 1.6: Our closed-channel EIT method to control interactions in ultracold
gases. An optical field with frequency ω1 and Rabi frequency Ω1 couples the ground
vibrational state |g1y in the closed channel to the bound excited state |ey in the closed
channel. A second optical field with frequency ω2 and Rabi frequency Ω2 couples the
lower lying ground molecular state |g2y in the closed channel to the bound excited
state |ey in the closed channel.

A theoretical proposal from our group [49, 53] suggested that two-optical fields

could be applied to the closed channel to suppress loss through electromagnetically

induced transparency (EIT). Our closed-channel EIT method is illustrated in Fig. 1.6.

In addition to the ω1 field, a second optical field ω2 couples the lower lying vibra-

tional bound state |g2y in the closed channel to the excited vibrational state |ey in

the closed channel. The ω1 field is a near-resonant optical field that induces changes

in the scattering length by light shifting the state |g1y and the ω2 field suppresses
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loss through destructive quantum interference. Electromagnetically induced trans-

parency (EIT) [54, 55] is a well known technique in the field of quantum optics where

atomic absorption due to an optical field is suppressed by the use of another optical

field that creates a transparency window in the absorption spectra of the atoms.

In addition to suppressing atom loss, our closed-channel EIT method has other

major advantages compared to single-field methods. Using closed-channel EIT, a

small change in the frequency of either the ω1 field or ω2 field creates narrow features

in the relative momentum k dependence of the scattering phase shift δ. Therefore, we

can tune the scattering length by changing the frequency of the optical fields, thereby

avoiding any net change in the optical dipole trapping potential. Since single-field

methods use large detunings to avoid atom loss, small changes in frequency of the

optical field will have negligible effect on the scattering length. The only “knob”

for controlling the interactions in single-field methods is the intensity of the optical

beam. However, changing the intensity of the optical beam to control interactions

might cause adverse effects of creating unwanted trapping potential on the atoms.

My PhD work primarily focused on building an optical system that experimen-

tally demonstrates the use of closed-channel EIT to optically control interactions in

ultracold gases. In the work presented here, I will demonstrate that using closed-

channel EIT, the spontaneous lifetime of atoms near a broad Feshbach resonance in

6Li is increased from 0.5 ms for single-field methods to 400 ms using our two-field

methods. I will further demonstrate that the narrow Feshbach resonance in 6Li can

be shifted by 3 G, about 30 times its width, while suppressing atom loss.

I will also present a new theoretical model, the continuum-dressed state model to

calculate the momentum dependent optically induced scattering phase shift of the

colliding atom pair. Previous theoretical approaches from our group [49, 53] and

others [9, 56] are valid for narrow Feshbach resonances with weak hyperfine coupling

between the scattering continuum and the molecular bound state. However, for

14



Feshbach resonances with strong hyperfine coupling, Ref. [9, 49, 53, 56] does not

predict the correct behavior. Therefore, I developed a new theoretical model that

provides a comprehensive treatment by treating both the broad and narrow Feshbach

resonances in a unified manner.

The validity of the continuum-dressed state model is tested by comparing our

data. The continuum-dressed state model fits the data both in magnitude and shape

using only one fitting parameter. The continuum-dressed state model is one of the

important results reported in this thesis as it provides a general prescription to

calculate the scattering phase shift for optical control experiments.

1.5 Dissertation organization

In the next chapter, I will introduce the basic theory of collisional Feshbach reso-

nances. I will derive the scattering state wavefunction and the scattering phase shift

due to a magnetic Feshbach resonance.

In chapter 3, I will develop the continuum-dressed state model for optical control

of interactions. Using the continuum-dressed state model, I will derive the relative

momentum dependent optically induced scattering phase shift

In chapter 4, I will use optically induced phase shift derived using the continuum-

dressed state model in chapter 3 to derive the two-body loss rate constant K2, zero

energy s-wave scattering length a, and the effective range re. I will further show the

predictions of the continuum dressed state model for closed-channel EIT control of

interactions near the broad and narrow Feshbach resonances in 6Li.

In chapter 5, I will briefly discuss the experimental setup used in our laboratory

to create a ultracold gas of 6Li atoms and explain in detail the optical system that I

designed and built to demonstrate the closed-channel EIT in an ultracold gas of 6Li

atoms.

In chapter 6, I will discuss the experimental results for the closed-channel EIT
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experiment near the broad and narrow Feshbach resonances in 6Li. I will use the

continuum-dressed state model to fit our experimental data, demonstrating the va-

lidity of the continuum-dressed state model in accurately predicting momentum-

dependant scattering phase shift. Furthermore, I will summarize my entire work and

discuss future directions of this project.
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2

Theory of Collisional Feshbach Resonances

In two-atom scattering, a collisional Feshbach resonance occurs when the total energy

of a pair of free unbound atoms is tuned into resonance with a molecular bound state,

Fig. 2.1. This leads to an resonant enhancement of the scattering cross section where

the scattering length diverges. The energetically accessible scattering channel of the

free unbound atoms is called the open channel. The atom-pair enters and exits in

this channel. The molecular bound state is not energetically accessible by the free

unbound atoms and resides in the energetically closed channel. The open channel

state can be tuned using an external magnetic field to be degenerate with the closed

channel molecular state thereby creating a Feshbach resonance due to the hyperfine

coupling between the open and closed channels. This method of using magnetic fields

to induce a collisional resonance is called a magnetic Feshbach resonance.

The expression for the zero energy s-wave scattering length a near a magnetic

Feshbach resonance is given by [1]

a “ abg ´ |abg|
∆B

B ´Bres

, (2.1)

where abg is the background scattering length, ∆B is the width of the resonance,
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Figure 2.1: Magnetic Feshbach resonance arises due to the coupling between the
molecular bound state |g1y and the scattering continuum |T, ky. Down arrow indi-
cates that increasing the magnetic field tunes the energy of the scattering continuum
downward. (top) At B “ 0, the energetically accessible scattering state |T, ky (open
channel) of the unbound free atom pair is higher in energy than the molecular bound
state. (bottom) At B “ Bres, the molecular bound state is degenerate with the scat-
tering continuum which leads to Feshbach resonance due to the presence of hyperfine
coupling between them.

Bres is the resonance magnetic field, and B is the magnetic field. From Eq. 2.1, we

can see that when B “ Bres, the scattering length a diverges.

The lowest two hyperfine states in 6Li (see section 2.1) have a broad Feshbach

resonance at 832.2 G with width ∆B “ 300 G [57, 58] and a narrow Feshbach

resonance at 543.2 G with width ∆B “ 0.1 [59]. Fig. 2.2 shows the plot of the

scattering length (Eq. 2.1) for the case of broad Feshbach resonance (Fig. 2.2 top)

and narrow Feshbach resonance (Fig. 2.2 bottom) in 6Li. The background scattering

lengths abg in Eq. 2.1 given in terms of the Bohr radius a0 for the broad and narrow
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Figure 2.2: Zero energy scattering length a in units of background scattering
length abg as a function of magnetic field for the broad Feshbach resonance (top) and
the narrow Feshbach resonance (bottom). The background scattering length abg for
broad and narrow Feshbach resonance in 6Li is ´1450 a0 and 62 a0, respectively.

Feshbach resonances in 6Li are ´1450 a0 and 62 a0, respectively.

The region to the left of the resonance where B ă Bres is called the BEC side,

since a BEC (Bose-Einstein condensate) of molecules can be created at sufficiently
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low temperatures. The region to the right of the resonance where B ą Bres is called

the BCS side, where BCS (Bardeen-Cooper-Scrieffer) theory is required to explain

the formation of Cooper pairs at low temperatures.

On the BEC side, the scattering length is positive and the interactions between

the atoms are repulsive. Also, the triplet continuum |T, ky lies in energy above the

molecular bound state |g1y. The unbound free atom pairs in |T, ky can form molecules

by three body recombination. The molecules can decay into the bound state |g1y,

forming a BEC of 6Li atoms. At low temperatures, when the thermal energy is less

than the binding energy of the molecules, the molecular population is stable i.e.,

the molecules cannot break into free atom pairs and decay back into the continuum,

which lies higher in energy.

On the BCS side, the scattering length is negative and the interaction betweens

the atoms are attractive. The triplet continuum |T, ky lies lower in energy than

the molecular bound state |g1y. In the presence of other fermions i.e., in the so

called “Fermi sea”, two fermions with weak attractive interactions between them can

form Cooper pairs by weakly coupling to |g1y that lies above |T, ky. The formation

of Cooper pairs can occur only at very low temperatures due to the presence of

weak coupling between the pairs. Two-body physics cannot be used to study the

interactions and many-body physics is required to explain the physics on the BCS

side.

In this chapter, we will formally derive the theory of magnetic Feshbach reso-

nances and derive the scattering parameters such as the scattering length a and the

effective range re. In our theoretical treatment, we study the mixing between the

scattering continuum in the open channel and the molecular bound state near a Fes-

hbach resonance using a “dressed state” picture, where the molecular bound state is

considered to be “dressed” by the scattering continuum due to the hyperfine mixing

between them. Although several theoretical treatments for Feshbach resonances in
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ultracold gases have been reported over the past decade [1, 60], we will show that

our treatment of Feshbach resonances using these dressed states provides a simple

and institutive picture of the exotic physics near a magnetic Feshbach resonance. In

the next section, we will consider the Feshbach resonances in 6Li.

2.1 Feshbach resonance in 6Li

6Li is a fermion with 3 electrons, 3 protons, and 3 neutrons. The nuclear spin

is I “ 1. The electronic ground state of 6Li has a total electronic spin angular

momentum of S “ 1{2 and total electronic orbital momentum of L “ 0. Hence, the

total angular momentum F takes the values, F “ 1{2 and F “ 3{2. In the absence

of external magnetic field, the F “ 1{2 state is two-fold degenerate corresponding to

mf “ 1{2,´1{2 and the F “ 3{2 state is four-fold degenerate corresponding to mf “

´3{2,´1{2, 1{2, 3{2. The application of a bias magnetic field breaks this degeneracy

and gives rise to six hyperfine states, conventionally labeled as |1y, |2y, |3y, |4y, |5y,

and |6y in the order of increasing energy. The electronic structure of 6Li is covered

extensively in all previous thesis in our group. I therefore suggest the reader to refer

to older thesis [61] in our group to get a detailed understanding about the hyperfine

states in 6Li.

In our laboratory, experiments using ultracold atoms are done using a 50-50

mixture of the two lowest hyperfine states of 6Li, namely, states |1y and |2y. We

will now discuss the two-atom states responsible for the broad and narrow Feshbach

resonances in 6Li. In the |ms,mIy basis, where ms is the electronic spin projection

quantum number and mI is the nuclear spin projection quantum number, the lowest

energy hyperfine state |1y is a superposition of |1{2, 0y and |´1{2, 1y and the second

lowest energy hyperfine state |2y is a superposition of |1{2,´1y and | ´ 1{2, 0y.

In low energy s-wave collisions of atoms in a |1y ´ |2y mixture, where one atom

is in |1y and the other atom is in |2y, the total magnetic quantum number M “ 0 is
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conserved in a bias magnetic field Bz. In the |S,ms; I,mIy basis, where S is the total

electronic spin quantum number and I is the total nuclear spin quantum number of

the two-atom system, there are five states for M “ 0. These include two singlet

states, |0, 0; 0, 0y and |0, 0; 2, 0y and three triplet states, |1,´1; 1, 1y, |1, 0; 1, 0y, and

|1, 1; 1,´1y.

The triplet state |1, 0; 1, 0y does not tune with the magnetic field (ms “ 0) and

the triplet state |1, 1; 1,´1y tunes upward with magnetic field (ms “ `1). The only

triplet state that tunes downward with magnetic field is |1,´1; 1, 1y (ms “ ´1).

For the Feshbach resonances in 6Li, the energy of the triplet state has to be tuned

downward to be degenerate with the bound singlet vibrational state, Fig. 2.1. Hence,

the triplet state |1,´1; 1, 1y which tunes downward with magnetic field is responsible

for the Feshbach resonance in 6Li. We write the incoming triplet state as

|T y “ |1,´1; 1, 1y. (2.2)

The Zeeman-hyperfine energy of this triplet state is

ET “ ´
aHF

2
´ 2µB B (2.3)

where aHF “ hˆ 152.1 MHz is the hyperfine coupling constant, µB “ 1.4 MHz/G is

the Bohr magnetron, and B is the magnetic field.

It has sometimes been reported in the literature that one of the two singlet

states is responsible for the broad Feshbach resonance and the other singlet state

is responsible for the narrow Feshbach resonance [62]. Recent work [49, 53] from

our group with rigorous evaluation of the energy shifts due to singlet-triplet mixing

near a Feshbach resonance has made this argument invalid. As reported in [49, 53],

a superposition of two singlet states |gn1 y, is responsible for the narrow Feshbach

resonance at 543.2 G. The state |gn1 y has zero first order hyperfine mixing with the

triplet state |1,´1; 1, 1y but has a second order mixing through the triplet state
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|1, 0; 1, 0y . We write

|gn1 y “
1

3
|0, 0; 0, 0y `

2
?

2

3
|0, 0; 2, 0y (2.4)

The singlet state that is orthogonal to |gn1 y, namely |gb1y, is responsible for the broad

Feshbach resonance at 832.2 G. We write

|gb1y “
2
?

2

3
|0, 0; 0, 0y ´

1

3
|0, 0; 2, 0y (2.5)

The singlet-triplet hyperfine coupling for the broad Feshbach resonance is VHF {~ “

131.6 MHz and for the narrow Feshbach resonance is VHF {~ “ 5.9 MHz.

In the general treatment of the Feshbach resonance presented in the rest of the

chapter, both the narrow Feshbach resonance singlet state |gn1 y and the broad Fes-

hbach resonance singlet state |gb1y will be collectively called |g1y. As we have estab-

lished the relevant states involved in the Feshbach resonance of 6Li, we will proceed to

construct a theoretical framework, which we use to derive the scattering parameters.

2.2 Continuum-dressed state treatment of Feshbach resonance

g1 〉 T,k〉

VHF

E〉 Ek〉

Figure 2.3: Transformation from bare states (left) to dressed states (right). The
bare singlet bound state |g1y and bare triplet continuum |T, ky with hyperfine mixing
VHF , leads to two dressed states, namely, the dressed bound state |Ey and dressed
continuum state |Eky.

As mentioned in the previous section, the hyperfine coupling between the singlet

ground state |g1y and the triplet state |T, ky causes a Feshbach resonance. In our

theoretical approach, we treat the hyperfine mixing between the singlet bound state

|g1y and the triplet continuum |T, ky in the “dressed state” picture, where |g1y gets
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“dressed” by |T, ky. The dressing of |g1y by |T, ky leads to two dressed states, namely,

the dressed continuum |Eky and the dressed bound state |Ey (Fig. 2.3). Hence, both

the dressed continuum |Eky and the dressed bound state |Ey are superpositions of

|g1y and |T, ky.

We will study the Feshbach resonance by first deriving the wavefunction of the

dressed continuum state |Eky and the dressed bound state |Ey.

2.3 Dressed continuum state |Eky

We write |Eky as a superposition of |g1y and |T, ky,

|Eky “ c1 |g1y ` cT pkq |T, ky `
ÿ

k1‰k

cT pk
1
q |T, k1y, (2.6)

where |T, ky represents the chosen incoming triplet scattering state with relative mo-

mentum ~ k and |T, k1y represents all other triplet scattering states in the continuum

with relative momentum ~ k1. Here, cT pkq is the probability amplitude of the chosen

input state |T, ky, cT pk
1q is the probability amplitude of the rest of the continuum

|T, k1y, and c1 is the probability amplitude of the bound state |g1y.

Writing the basis states in Eq. 2.6 in terms of the factored spin and relative

momentum part filtered, we have

|Eky “ c1 |sy |vy ` cT pkq |T y |ky `
ÿ

k1‰k

cT pk
1
q |T y |k1y, (2.7)

where |sy is the spin singlet state for |g1y and |vy is the vibrational bound state for

|g1y.

The Hamiltonian of the system can be written in terms of the singlet state |sy

and the triplet continnum |T y states,

H “ Eg1 |syxs| `

ˆ

ET `
~2k2

m

˙

|T yxT | ` VHF p|syxT | ` |T yxs|q, (2.8)

24



where Eg1 is the energy of the ground singlet bound state, ET “ ´aHF {2 ´ 2µBB

is the energy of the triplet continuum, ~2k2{m is the relative kinetic energy between

two particles (µ “ m{2 is the reduced mass), and VHF is the hyperfine coupling

between the ground singlet state |sy and the triplet continnum |T y.

Using the Schrödinger equation, we have

H|Eky “ Ek|Eky, (2.9)

where Ek is the total energy of the selected input state, given by

Ek “ ET `
~2k2

m
. (2.10)

We solve for the probability amplitudes in |Eky by taking the projections of the basis

states onto Eq. 2.9. Projecting onto |sy|vy, and using Eq. 2.7 and Eq. 2.8, gives

pEk ´ Eg1q c1 “ VHF xv|ky cT pkq `
ÿ

k1‰k

VHF xv|ky cT pk
1
q, (2.11)

where xv|ky is the spatial overlap integral of the vibrational bound state wavefunction

with bare triplet continuum eigenstate.

Defining VHF xv|ky “ ~ g˚pkq in Eq. 2.11, we have

pEk ´ Eg1q c1 “ ~ g˚pkq cT pkq `
ÿ

k1‰k

~ g˚pk1q cT pk1q. (2.12)

Similiarly, projecting Eq. 2.9 onto |T, k1y on Eq. 2.9 and using Eq. 2.7 and Eq. 2.8,

we have

cT pk
1
q “

~ gpk1q
pEk ´ E 1kq

c1; for k1 ‰ k. (2.13)

Substituting Eq. 2.13 in Eq. 2.12, yields

pEk ´ Eg1q c1 “ ~ g˚pkq cT pkq `
ÿ

k1‰k

|~ gpk1q|2

pEk ´ E 1kq
c1. (2.14)
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Rewriting Eq. 2.14, in terms of the input amplitude cT pkq

c1 “
~ g˚pkq

Ek ´ Eg1 ´ ΣEpkq
cT pkq, (2.15)

where ΣEpkq is the energy shift given by

ΣEpkq “
ÿ

k1‰k

|~ gpk1q|2

pEk ´ E 1kq
. (2.16)

Substituting Eq. 2.15 in Eq. 2.13, we write cT pk
1q in terms of the input amplitude

cT pkq

cT pk
1
q “ cT pkq

~ g˚pkq
Ek ´ Eg1 ´ ΣEpkq

~ gpk1q
pEk ´ E 1kq

(2.17)

Using Eq. 2.17 in Eq. 2.6, we obtain the dressed continuum state

|Eky “ c1 |g1y ` cT pkq

#

|T, ky ` |T, k1y
~ g˚pkq

Ek ´ Eg1 ´ ΣEpkq

ÿ

k1‰k

~ gpk1q
pEk ´ E 1kq

+

. (2.18)

As r Ñ 8, the molecular wavefunctions vanish since xr Ñ 8|vy “ 0 and only the

triplet continuum part of the wavefunction survives. Hence, taking the projection of

Eq. 2.18 onto |r Ñ 8y,

ψEkpr Ñ 8q “ cT pkq

"

xr Ñ 8|ky

`
~ g˚pkq

Ek ´ Eg1 ´ ΣEpkq

ÿ

k1‰k

~ gpk1q
pEk ´ E 1kq

xr Ñ 8|k1y

+

. (2.19)

As |r Ñ 8y, we can write the bare continuum state wave function xr|ky for box

normalization as

xr Ñ 8|ky “
1
?
V

sinpkr ` δbgq

kr
, (2.20)
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where V is the box normalization volume and δbg is the background phase shift.

Using the effective range expansion [13, 14], the phase shift δbg for k Ñ 0 obeys,

k cot δbg “ ´
1

abg
`
k2

2
rbg, (2.21)

where abg is the background scattering length and rbg is the background effective

range.

Substituting Eq. 2.20 in Eq. 2.19, we get

ψEkpr Ñ 8q “
cT pkq

kr
?
V

"

sinpkr ` δbgq

`
~ k g˚pkq

Ek ´ Eg1 ´ ΣEpkq

ÿ

k1‰k

~ gpk1q
pEk ´ E 1kq

sinpkr1 ` δbgpk
1qq

k1

*

. (2.22)

We define the continuum normalized overlap integral

~g̃pkq “

d

V

p2πq3
~gpkq “ VHF xk̃|vy, (2.23)

which is independent of the volume V . We convert the summations in Eq. 2.22 into

integrals by using

ÿ

k1‰k

Ñ P
ż

d3k1
V

p2πq3
“ P

ż 8

0

dk14πk
12 V

p2πq3
, (2.24)

where P signifies the principal part (k1 ‰ k). Using Eq. 2.23 and Eq. 2.24 in Eq. 2.22,

yields

ψEkpr Ñ 8q “
cT pkq

kr
?
V

"

sinpkr ` δbgq ´
k

Ek ´ Eg1 ´ ΣEpkq
I1

*

, (2.25)

where I1 is

I1 “ 4πP
ż 8

0

dk1 k12
~2 g̃˚pkq g̃pk1q

pE 1k ´ Ekq

sinrk1r ` δbgpk
1qs

k1
. (2.26)
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Substituting Ek “ ET ` ~2 k2{m in Eq. 2.26, yields

I1 “ 4πP
ż 8

0

dk1 k12
~2 g̃˚pkq g̃pk1q
~2

m
pk12 ´ k2q

sinrk1r ` δbgpk
1qs

k1
(2.27)

We will now determine I1 using a complex integral approach and substitute the

result back into Eq. 2.25 to derive the dressed triplet scattering state wave function.

From the effective range expansion of δbgpkq in Eq. 2.21, we know that δbgpk
1q is

an odd function of k1, because the right hand side of Eq. 2.21 is even in k. Then,

the functions g̃pkq and g̃pk1q are even functions in k1 because Eq. 2.20 is even in k1.

Hence, the function sinrk1r ` δbgpk
1qs{k1 is also an even function in k1, making the

total integrand in Eq. 2.27 even in k1. Therefore, we symmetrize the limits of the

integration and rewrite Eq. 2.27,

I1 “ 2πm

„

Im

"

P

ż 8

´8

dk1 k1

pk12 ´ k2q
g̃˚pkq g̃pk1q eik

1r`δbgpk
1q

*

. (2.28)

The first step in using the complex integral approach is to evaluate the poles of

the integrand in Eq. 2.28. The overlap integral ~ g̃˚pkq can be evaluated using a

simple model for the bound state wavefunction as shown in Ref. [49], where

xr|vy “
1

?
2πR

e´r{R

r
. (2.29)

The continuum normalized wave function for r Ñ 8 is,

xr|k̃y “
1

a

p2πq3
sinpkr ` δbgq

kr
. (2.30)

28



From Eq. 2.29 and Eq. 2.30, overlap integral xk̃|vy is given by

xk̃|vy “

ż 8

0

dr 4π r2 1
?

2πR

e´r{R

r

1
a

p2πq3
sinpkr ` δbgq

kr

“ Im

„

1

kπ
?
R

ż 8

0

dr eipkr`δbgqe´r{R


“ Im

„

eiδbg

kπ
?
R

ż 8

0

dr eikre´r{R


“ Im

„

eiδbg

kπ
?
R

„

R

1´ ikR



“ Im

„

eiδbg

kπ
?
R

„

Rp1` ikRq

1` k2R2



“ Im

„

cos δbg ` i sin δbg

kπ
?
R

„

Rp1` ikRq

1` k2R2



“

„

kR2 cos δbg `R sin δbg

kπ
?
Rp1` k2R2q



(2.31)

For broad Feshbach resonances, where the effective range re is small, we can

ignore the k2 terms in the effective range expansion in Eq. 2.21 and write

tan δbg “ ´k abg (2.32)

From Eq. 2.32, it follows

sin δbg “ ´
k abg

b

1` k2 a2
bg

(2.33)

cos δbg “
1

b

1` k2 a2
bg

(2.34)

Using Eq. 2.33 and Eq. 2.34 in Eq. 2.31, we obtain

xk̃|vy “

»

–

kR2 ´ kRabg

kπ
?
Rp1` k2R2q

b

1` k2 a2
bg

fi

fl (2.35)
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Further reduction of Eq. 2.35, yields

xk̃|vy “
R3{2

π

1
b

1` k2 a2
bg

1´ abg{R

1` k2R2
(2.36)

From Eq. 2.36 and Eq. 2.23, it follows

|~g̃pkq|2 “
R3

π2

V 2
HF

1` k2 a2
bg

p1´ abg{Rq
2

p1` k2R2q2
(2.37)

For abg ąą R, as in the case of broad Feshbach resonance where abg “ ´1405 a0,

the factor k2a2
bg dominates over k2R2. Therefore, using 1 ´ abg{R « ´abg{R in the

numerator and 1` k2R2 « 1 in the denominator of Eq. 2.37, we obtain

|~g̃pkq|2 “
V 2
HF R

π2

|abg|
2

1` k2 a2
bg

(2.38)

From Eq. 2.38, we take

~g̃pk1q “
VHF
π

ˆ

a2
bg R

1` pk1abgq2

˙

1
2

. (2.39)

From Eq. 2.39, we can write

g̃pk1q “
g̃p0q

a

1` pk1abgq2
, (2.40)

where

g̃p0q “
VHF pa

2
bg Rq

1
2

π
. (2.41)

We write eiδbg as,

eiδbg “
1` i tan δbg
a

1` tan2 δbg
. (2.42)
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From the effective range expansion in Eq. 2.21, ignoring higher order terms in k, we

write

tan δbg “ ´k abg. (2.43)

From Eq. 2.40 - Eq. 2.43, we obtain

g̃pk1qeiδbg “ g̃p0q
1´ ikabg

1` pkabgq2
“

g̃p0q

1` ikabg
. (2.44)

From Eq. 2.44, we see that the function g̃pk1qeiδbg has no poles on the real axis.

For poles on either upper half or lower half of the imaginary axis, k1 “ ˘iq, where

q ą 0, and eik
1r takes the form e´|q|r in the convergent half-plane. Therefore, as

r Ñ 8, eik
1r Ñ 0. Hence, as r Ñ 8, only poles on real axis k1 “ ˘k contribute for

the integral in Eq. 2.28. Therefore, using Fig. 2.5 to evaluate the principal part,

k'

C'

k- k

Z

I 1
Figure 2.4: Contour Integral for I1

I1 ´ πi rRespkq `Resp´kqqs Ñ 0 as r Ñ 8.

Using Cauchy residue theorem, Eq. 2.28 becomes

I1 “ 2πm |g̃pkq|2 Im

"

πi
k1 ´ k

k1 ´ k

k1

k1 ` k
eik

1r`δbgpk
1q

∣∣∣∣
k1Ñk

*

` 2πm |g̃pkq|2 Im

"

πi
k1 ` k

k1 ` k

k1

k1 ´ k
eik

1r`δbgpk
1q

∣∣∣∣
k1Ñ´k

*

. (2.45)
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Hence Eq. 2.45 yields

I1 “ 2πm |g̃pkq|2 π cospkr ` δbgq. (2.46)

Substituting Eq. 2.46 in Eq. 2.25, we obtain

ψEkpr Ñ 8q “
cT pkq

kr
?
V

"

sinpkr ` δbgq ´
2π2mk |g̃pkq|2

Ek ´ Eg1 ´ ΣEpkq
cospkr ` δbgq

*

. (2.47)

Eq. 2.47 is the expression for the wavefunction of the dressed continuum scattering

state. We will use normalization of Eq. 2.47 to find the amplitude cT pkq of the chosen

input state, the zero energy scattering length a, and the effective range re.

2.3.1 Magnetic Feshbach resonance induced phase shift ∆̃

As r Ñ 8, the scattering state wavefunction, which is purely triplet in nature,

will accumulate a phase shift ∆̃ induced by the magnetic Feshbach resonance. In

this section, we will evaluate the phase shift ∆̃ due to the Feshbach resonance.

Furthermore, we will also evaluate the probability amplitude cT pkq of the triplet

scattering state so that the scattering state wavefunction in Eq. 2.47 is normalized .

From Eq. 2.20, the asymptotic form of the scattering state wavefunction in the

presence of a magnetic Feshbach resonance, must take the form

ψEkpr Ñ 8q “
1
?
V

1

kr
sinpkr ` δbg ` ∆̃q. (2.48)

Expanding Eq. 2.48,

ψEkpr Ñ 8q “
1
?
V

1

kr

!

cos ∆̃ sinpkr ` δbgq ` sin ∆̃ cospkr ` δbgq
)

. (2.49)

Comparing Eq. 2.49 with Eq. 2.47, we have

cT pkq “ cos ∆̃ (2.50)
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´cT pkq

ˆ

2π2mk |g̃pkq|2

Ek ´ Eg1 ´ ΣEpkq

˙

“ sin ∆̃ (2.51)

From Eq. 2.50, we have

|cT pkq|
2
“ cos2 ∆̃ “

1

1` tan2 ∆̃
. (2.52)

Dividing Eq. 2.51 by Eq. 2.50,

tan ∆̃ “ ´
2π2mk |g̃pkq|2

Ek ´ Eg1 ´ ΣEpkq
“

1

cot ∆̃
. (2.53)

Eq. 2.53 is the expression for phase shift ∆̃ due to the magnetic Feshbach resonance.

Using Eq. 2.53 in Eq. 2.52, we obtain

|cT pkq|
2
“

rEk ´ Eg1 ´ ΣEpkqs
2

rEk ´ Eg1 ´ ΣEpkqs2 ` r2π2mk |g̃pkq|2s2
. (2.54)

2.3.2 Zero energy scattering length a

In this section, we will derive the expression for zero energy scattering length near

a magnetic Feshbach resonance using the expression for the phase shift ∆̃ derived in

the previous section. From Eq. 2.53, we have

k cot ∆̃ “ ´
Ek ´ Eg1 ´ ΣEpkq

2π2m |g̃pkq|2
. (2.55)

Using the effective range expansion in Eq. 2.21 for the phase shift induced by the

magnetic Feshbach resonance ∆̃, we obtain

k cot ∆̃ “
´1

ã
`
k2

2
r̃e, (2.56)

where ã is the zero scattering length due to the magnetic Feshbach resonance and r̃e

is the corresponding effective range. From Eq. 2.48, the total phase shift ∆ is given

by

∆ “ ∆̃` δbg. (2.57)
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Using Eq. 2.57, we can write the total phase shift ∆ as

k cot ∆ “
pk cot ∆̃qpk cot δbgq ´ k

2

k cot ∆̃` k cot δbg
. (2.58)

Substituting k cot ∆̃ from Eq. 2.55 and k cot δbg from Eq. 2.21 in Eq. 2.58, yields for

k Ñ 0

a “ ã` abg. (2.59)

From Eq. 2.10, we know Ek “ ET for the case k “ 0. Comparing Eq. 2.55 and

Eq. 2.56 and substituting Ek “ ET for k “ 0, we obtain the zero energy scattering

length due to the magnetic Feshbach resonance

ã “
2π2m |g̃p0q|2

ET ´ Eg1 ´ ΣEp0q
. (2.60)

Since the energy of the triplet state is

ET “ ´
aHF

2
´ 2µBB, (2.61)

we know that at resonance when B “ Bres, the energy of the triplet state can be

written as

pET qres “ ´
aHF

2
´ 2µBBres. (2.62)

Further, we know that the scattering length ã Ñ 8 at resonance, implying the

denominator in Eq. 2.60 goes to zero. Hence, at resonance

pET qres ´ Eg1 ´ ΣEp0q “ 0. (2.63)

Substituting Eq. 2.62 in Eq. 2.63, yields

pET qres “ Eg1 ` ΣEp0q “ ´
aHF

2
´ 2µBBres. (2.64)
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From Eq. 2.61 and Eq. 2.64, we have

ET ´ Eg1 ´ ΣEp0q “ ´2µBpB ´Bresq. (2.65)

We define the width of the resonance ∆B as

2µB|abg|∆B “ 2π2m |g̃p0q|2. (2.66)

Using Eq. 2.65 and Eq. 2.66 in Eq. 2.60, the resonant part of the scattering length

is then

ã “ ´|abg|
∆B

pB ´Bresq
. (2.67)

Using Eq. 2.67 in Eq. 2.59, we obtain the zero-energy scattering length

a “ abg ´ |abg|
∆B

B ´Bres

. (2.68)

Eq. 2.68 is the standard expression for zero-energy scattering length for a mag-

netic Feshbach resonance [1] that was introduced at the start of the chapter. The

resonance position Bres, width ∆B, background scattering length abg, and the hy-

perfine coupling VHF for various resonances in 6Li for s-wave collisions are given in

Table. 2.1.

Table 2.1: Magnetic Feshbach resonances in 6Li for s-wave collisions [49, 57, 58, 59]

Mixture BrespGq ∆B abgpa0q VHF pMHzq

1-2(B) 834 300 -1405 ´131.6
1-2(N) 543 0.1 +62 ´5.9

1-3 690 122 -1727 76.0
2-3 811 222 -1490 107.5
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2.3.3 Effective range re

In this section, we derive the expression for the effective range re. We use the effective

range expansion in Eq. 2.21 to write the phase shift ∆̃ induced by the Feshbach

resonance in terms of the resonant scattering length ã and the effective range r̃e,

k cot ∆̃ “
´1

ã
`
k2

2
r̃e. (2.69)

For k Ñ 0, expanding k cot ∆̃ in Eq. 2.56 to the order k2 ,

k cot ∆̃ “ ´
1

ã
`
k2

2
r̃e “ ´

ET ´ Eg1 ´ ΣEp0q

2π2m |g̃p0q|2
´

~2k2

m

2π2m |g̃p0q|2
. (2.70)

In the above equation, only the kinetic energy term in k2 survives and other k2

terms in the expansion cancel [49]. Comparing k2 terms in Eq. 2.70 and Eq. 2.69

yields

r̃e “ ´
~2

π2m2 |g̃p0q|2
. (2.71)

Substituting Eq. 2.66 in Eq. 2.71, we obtain

r̃e “ ´
~2

mµB|abg|∆B
. (2.72)

From Eq. 2.72, we can see that for large ∆B, such as the broad resonance in 6Li,

the effective range is small and for small ∆B, such as the narrow resonance in 6Li, the

effective range is large. For the broad Feshbach resonance at 832.2 G and the narrow

Feshbach resonance at 543.2 G in 6Li, re » ´1 a0 and ´7ˆ 104a0, respectively.

2.4 Dressed bound state |Ey

In the previous section, we derived the wavefunction for the dressed continuum scat-

tering state |Eky and used it to derive the scattering length a and the effective range
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re. In this section, we will study the dressed bound state |Ey. The dressed bound

state can be written as

|Ey “ Cs|sy |vy `
ÿ

all k

CT pkq|T y |ky , (2.73)

where Cs is the probability amplitude of |Ey to be in the bare molecular bound state

|g1y and CT pkq is the probability amplitude of |Ey to be in the bare continuum |T, ky.

Note that capital letters, Cs and CT pkq, are used to denote the probability am-

plitudes in |Ey and small letters, cs and cT pkq, are used to denote the probability

amplitudes in |Eky, since Cs ‰ cs and CT pkq ‰ cT pkq.

We recall from previous section, that the hamiltonian can be written as

H “ Eg1 |syxs| `

ˆ

ET `
~2k2

m

˙

|T yxT | ` VHF p|syxT | ` |T yxs|q, (2.74)

Using the Schrödinger equation, we have

H|ψEy “ E|ψEy. (2.75)

where E is the energy of the dressed bound state. We solve for the probability

amplitudes in |Ey by taking the projections of basis states on Eq. 2.75. For |sy|vy,

using Eq. 2.74 and Eq. 2.73, this gives

pE ´ Eg1qCs “
ÿ

all k

VHF xv|kyCT pkq. (2.76)

Substituting Eq. 2.23 in Eq. 2.76

pE ´ Eg1qCs “
ÿ

all k

VHF xv|kyCT pkq “
ÿ

all k

~g˚pkqCT pkq. (2.77)

where from Eq. 2.23, we know

~gpkq ” VHF xk|vy. (2.78)
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We solve for the probability amplitude CT pkq by taking the projections of |k1y on

Eq. 2.75. Using Eq. 2.74 and Eq. 2.73, we get

E CT pk
1
q “ VHF Csxk

1
|vy `

ˆ

ET `
~2k12

m

˙

CT pk
1
q. (2.79)

Substituting Eq. 2.78 in Eq. 2.79, yields

ˆ

E ´ ET ´
~2k2

m

˙

CT pkq “ ~gpkqCs. (2.80)

Substituting Eq. 2.80 in Eq. 2.77, we get

pE ´ Eg1qCs “
ÿ

all k

|~gpkq|2
`

E ´ ET ´
~2k2

m

˘ Cs. (2.81)

We define the energy shift of the bound state ΣpEq

ΣpEq ” E ´ Eg1 “
ÿ

all k

|~gpkq|2

pE ´ ET ´
~2k2

m
q
. (2.82)

We convert the summation into integral in Eq. 2.82,

ΣpEq “

ż

d3~k
|~g̃pkq|2

pE ´ ET ´
~2k2

m
q
“

ż

dk 4π k2 |~g̃pkq|2

pE ´ ET ´
~2k2

m
q
, (2.83)

where the continuum normalized overlap integral g̃pkq is defined by

~g̃pkq “

d

V

p2πq3
~gpkq “ VHF xk̃|vy. (2.84)

Using the normalization for the state |Ey in Eq. 2.73, we have

xE|Ey “ 1 “ |Cs|
2
`
ÿ

k

|CT pkq|
2. (2.85)
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Substituting Eq. 2.80 in Eq. 2.85

|Cs|
2

«

1`
ÿ

k

|~g̃pkq|2

pE ´ ET ´
~2k2

m
q2

ff

“ 1. (2.86)

Converting the summation into integral using box normalization in Eq. 2.86, yields

|Cs|
2

«

1`

ż

d3~k
|~g̃pkq|2

pE ´ ET ´
~2k2

m
q2

ff

“ 1. (2.87)

Using Eq. 2.83, we see that

BΣpEq

BE
“ ´

ż

d3~k
|~g̃pkq|2

pE ´ ET ´
~2k2

m
q2
. (2.88)

Substituting Eq. 2.88 in Eq. 2.87,

|Cs|
2

„

1´
BΣpEq

BE



“ 1. (2.89)

From Eq. 2.89, we obtain

|Cs|
2
“

„

1´
BΣpEq

BE

´1

” Z, (2.90)

where Z is the probability of |g1y to be in the dressed bound state |Ey.

The dressed bound state in Eq. 2.73 can be written as

|ψEy “ Cs

«

|sy |vy `
ÿ

all k

CT pkq

Cs
|T y |ky

ff

. (2.91)

Substituting CT pkq from Eq. 2.80 in Eq. 2.91, yields

|ψEy “ Cs

«

|sy |vy `
ÿ

all k

~gpkq
pE ´ ET ´

~2k2

m
q
|T y |ky

ff

(2.92)

where Cs is given in Eq. 2.90. Eq. 2.92 gives the wavefunction of the dressed bound

state |Ey.
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2.5 Properties of dressed states |Ey and |Eky

In this section, we will use the wavefunction of the dressed bound state |Ey and

dressed continuum state |Eky derived in the previous sections to study the properties

of dressed states, namely, the orthogonality of the states |Ey and |Eky, the probability

of the singlet molecular state |g1y in the dressed bound state |Ey, the total probability

of the singlet molecular state |g1y to be in the dressed continuum states, and the

molecular binding energy associated with the dressed bound state |Ey.

2.5.1 Orthogonality of |Ey and |Eky

In this section, we will prove that the dressed states |Ey and |Eky form an orthogonal

set. From Eq. 2.73, we can write the dressed bound state as

|Ey “ Cs |s, vy `
ÿ

k1

CT pk
1
q |T, k1y, (2.93)

where the probability amplitude CT pk
1q can be written in terms of Cs using Eq. 2.80

as

CT pk
1
q “

~ gpk1q
E ´ ET ´

~2k12

m

Cs. (2.94)

Using Eq. 2.93 in Eq. 2.94 and using the definition of Z in Eq. 2.90, we rewrite

Eq. 2.94 as

|Ey “
?
Z

„

|s, vy `
ÿ

k1

~ gpk1q
E ´ ET ´

~2k12

m

|T, k1y



. (2.95)

Rewriting the second term with the summation over all k1 in Eq. 2.95 separated into

a k term and a k1 ‰ k term, we get

|Ey “
?
Z

„

|s, vy `
~ gpkq

E ´ ET ´
~2k2

m

|T, ky `
ÿ

k1‰k

~ gpk1q
E ´ ET ´

~2k12

m

|T, k1y



. (2.96)
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Similiarly, we use Eq. 2.7 to write the dressed continuum state

|Eky “ c1pkq |s, vy ` cT pkq |T, ky `
ÿ

k1‰k

cT pk
1
q |T, k1y. (2.97)

Using Eq. 2.15 and Eq. 2.17, we write the probability amplitudes

cT pk
1
‰ kq “

~ gpk1q
Ek ´ ET ´

~2 k12

m

c1pkq. (2.98)

c1pkq “
~ g˚pkq

Ek ´ Eg1 ´ ΣEpkq
cT pkq. (2.99)

Substituting Eq. 2.98 and Eq. 2.99 in Eq. 2.97, yields

|Eky “ c1

„

|s, vy `
Ek ´ Eg1 ´ ΣEpkq

~ g˚pkq
|T, ky `

ÿ

k1‰k

~ gpk1q
Ek ´ ET ´

~2 k12

m

|T, k1y



.(2.100)

Using Eq. 2.96 and Eq. 2.100, we obtain

xE|Eky “ c1

?
Z

„

1`
~ g˚pkq

E ´ ET ´
~2k2

m

Ek ´ Eg1 ´ ΣEpkq

~ g˚pkq

`
ÿ

k1‰k

~ g˚pk1q
E ´ ET ´

~2k12

m

~ gpk1q
Ek ´ ET ´

~2 k12

m



. (2.101)

Substituting Ek “ ET ` ~2k2{m in Eq. 2.101, we have

xE|Eky “ c1

?
Z

„

1`
Ek ´ Eg1 ´ ΣEpkq

E ´ Ek
`

ÿ

k1‰k

|~ gpk1q|2

pE ´ E 1kqpEk ´ E
1
kq



.(2.102)

The third term with summation over k1 ‰ k in Eq. 2.102 can be written as

ÿ

k1‰k

|~ gpk1q|2

pE ´ E 1kqpEk ´ E
1
kq
“

1

E ´ Ek

«

ÿ

k1‰k

|~ gpk1q|2

pEk ´ E 1kq
´

ÿ

k1‰k

|~ gpk1q|2

pE ´ E 1kq

ff

. (2.103)
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Rewriting the second term in Eq. 2.103,

ÿ

k1‰k

|~ gpk1q|2

pE ´ E 1kqpEk ´ E
1
kq

“
1

E ´ Ek

„

ÿ

k1‰k

|~ gpk1q|2

pEk ´ E 1kq

´
ÿ

all k1

|~ gpk1q|2

pE ´ E 1kq
`
|~ gpkq|2

pE ´ Ekq



. (2.104)

From Eq. 2.16 and Eq. 2.82 we recall that the energy shift of the dressed contin-

uum and the energy shift of the dressed bound state is defined as

ΣEpkq ”
ÿ

k1‰k

|~ gpk1q|2

Ek ´ E 1k
. (2.105)

ΣpEq ”
ÿ

all k

|~gpkq|2

pE ´ Ekq
. (2.106)

Substituting Eq. 2.105 and Eq. 2.106 in Eq. 2.104,

ÿ

k1‰k

|~ gpk1q|2

pE ´ E 1kqpEk ´ E
1
kq
“

1

E ´ Ek

„

ΣEpkq ´ ΣpEq `
|~ gpkq|2

pE ´ Ekq



. (2.107)

Substituting Eq. 2.107 in Eq. 2.102, yields

xE|Eky “ c1

?
Z

„

1`
Ek ´ Eg1 ´ ΣEpkq

E ´ Ek
`

1

E ´ Ek
rΣEpkq ´ ΣpEqs

`
|~ gpkq|2

pE ´ Ekq2



. (2.108)

Simplifying Eq. 2.108,

xE|Eky “
?
Z c1

„

1`
Ek ´ Eg1 ´ ΣpEq

E ´ Ek
`
|~ gpkq|2

pE ´ Ekq2



. (2.109)

Using ΣpEq “ E ´ Eg1 (Eq. 2.82) in Eq. 2.109,

xE|Eky “
?
Z c1

„

1`
Ek ´ E

E ´ Ek
`
|~ gpkq|2

pE ´ Ekq2



. (2.110)
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The first two terms cancel, so that

xE|Eky “
?
Z c1

|~ gpkq|2

pE ´ Ekq2
. (2.111)

From Eq. 2.15 and Eq. 2.54, we can write the probability

|c1|
2
“

|~ gpkq|2

rEk ´ Eg1 ´ ΣEpkqs2 ` r2π2mk |g̃pkq|2s
. (2.112)

Using ΣpEq “ E ´ Eg1 (Eq. 2.82) in Eq. 2.112,

|c1|
2
“

|~ gpkq|2

rEk ´ E ` ΣpEq ´ ΣEpkqs2 ` r2π2mk |g̃pkq|2s
. (2.113)

Using Eq. 2.105 and Eq. 2.106, we get

|c1|
2
“

|~ gpkq|2
”

pEk ´ Eq `
|~ gpkq|2
pE´Ekq2

ı2

` r2π2mk |g̃pkq|2s
, (2.114)

where the factor 2π2mk |g̃pkq|2 is finite as the volume V Ñ 0.

From Eq. 2.86 and Eq. 2.90, we write the singlet molecular fraction Z as

Z “
1

1`
ř

k1
|~ gpk1q|2
pE´Ek1 q

2

. (2.115)

We further recall from Eq. 2.23, that the continuum normalized overlap integral g̃pkq

is related to gpkq by the relation

|~ gpkq|2 “
p2πq3

V
|~ g̃pkq|2. (2.116)

In Eq. 2.114, the factor 2π2mk |g̃pkq|2 is finite. For the case, E ‰ Ek and Z finite,

|~ gpkq|2 Ñ 0 as V Ñ 8, Hence

xE|Eky Ñ 0 for E ‰ Ek. (2.117)
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For the case E Ñ Ek,

1

pE ´ Ekq2
Ñ 0, (2.118)

keeping the dominant term we write |c2
1| and the singlet fraction Z using Eq. 2.114

and Eq. 2.115 as

|c1|
2
“
|~ gpkq|2
”

|~ gpkq|2
pE´Ekq

ı2 , (2.119)

and

Z “
1

|~ gpkq|2
pE´Ekq2

. (2.120)

Hence, for the case E Ñ Ek, using Eq. 2.119 and Eq. 2.120 in Eq. 2.111, we get

lim
EÑEk

xE|Eky “
1

|~ gpkq|
|E´Ek|

|~ gpkq|
|~ gpkq|2
|E´Ek|

|~ gpkq|2

pE ´ Ekq2
“ 1. (2.121)

Using Eq. 2.117 and Eq. 2.121, we obtain

xE|Eky “ δk,k1 (2.122)

2.5.2 Z(B) - Singlet character in dressed bound state |Ey

In this section, we will evaluate the probability ZpBq of finding the singlet molecular

state |g1y in the dressed continuum state |Ey. We can see from Eq. 2.73 and Eq. 2.90

that the probability Z of the singlet state |g1y in the dressed bound state |Ey is given

by

Z “ |xg1|Ey|
2
“ |Cs|

2
“

„

1´
BΣpEq

BE

´1

. (2.123)

Z is the amount of singlet character in the dressed molecules that populates the

dressed bound state |Ey on the BEC side of the resonance.
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We recall from Eq. 2.83 that the bound state shift ΣpEq is given by

ΣpEq “

ż 8

0

dk 4π k2 |~g̃pkq|2

pE ´ ET ´
~2k2

m
q
. (2.124)

From Eq. 2.30, we know that g̃pkq is an even function in k. Hence, the integrand in

Eq. 2.124 is an even function in k. Therefore, symmetrizing the integration limits,

ΣpEq “

ż 8

´8

dk 2π k2 |~g̃pkq|2

pE ´ ET ´
~2k2

m
q
. (2.125)

From Eq. 2.38, we know

|~g̃pkq|2 “
V 2
HF

π2

a2
bgR

1` pkabgq2
. (2.126)

Using Eq. 2.126 in Eq. 2.125, yields

ΣpEq “ 2 π

ż 8

´8

dk k2

pE ´ ET ´
~2k2

m
q

a2
bgR

1` pkabgq2
V 2
HF

π2
. (2.127)

Substituting x “ k|abg| and defining Ebg “ ~2{ma2
bg in Eq. 2.127, we get

ΣpEq “
2

π
|VHF |

2 R

|abg|

ż 8

´8

dx x2

1` x2

1

E ´ ET ´ Ebgx2
. (2.128)

Simplification of Eq. 2.128, yields

ΣpEq “ ´
2

π

|VHF |
2

Ebg

R

|abg|

ż 8

´8

dx x2

1` x2

1
ET´E
Ebg

` x2
. (2.129)

Now we will evaluate the integral in Eq. 2.129. We define q2 ” pET ´ Eq{Ebg in

Eq. 2.129. Evaluating the integral for q2 ą 0 i.e., E ă ET for a bound state, we have

ż 8

´8

dx x2

1` x2

1

q2 ` x2
“

π

1` q
. (2.130)
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Substituting Eq. 2.130 in Eq. 2.129, yields

ΣpEq “ ´
2

π

|VHF |
2

Ebg

R

|abg|

π

1`
b

ET´E
Ebg

. (2.131)

so that

ΣpEq “ ´
2R

|abg|

|VHF |
2

Ebg

1

1`
b

ET´E
Ebg

. (2.132)

From Eq. 2.66, we know that the width ∆B is written as

2µB|abg|∆B “ 2π2m |g̃p0q|2. (2.133)

Hence

2µB∆B “
2π2m|g̃p0q|2

|abg|
. (2.134)

From Eq. 2.126, we write

|~g̃p0q|2 “
V 2
HF

π2
a2
bg R. (2.135)

Using Eq. 2.135 in Eq. 2.134 and using Ebg “ ~2{ma2
bg, yields

2µB∆B “
2π2m|g̃p0q|2

|abg|
“

2R

|abg|

|VHF |
2

Ebg
. (2.136)

Substituting Eq. 2.136 in Eq. 2.132, we obtain a compact expression for the energy

shift of the dressed bound state

ΣpEq “
´2µB∆B

1`
b

ET´E
Ebg

. (2.137)

From Eq. 2.123, we know that the singlet molecular fraction is given by

Z “ |xg1|Ey|
2
“ |Cs|

2
“

„

1´
BΣpEq

BE

´1

. (2.138)
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From Eq. 2.137, we get

BΣpEq

BE
“ ´

2µB∆B

p1`
b

ET´E
Ebg

q2

d

ET ´ E

Ebg

1

2pET ´ Eq
. (2.139)

Substituting Eq. 2.139 in Eq. 2.138, we obtain

Z “
1

1` µB∆B
Ebg

b

Ebg
ET´E

1

p1`

c

ET´E

Ebg
q2

. (2.140)

Eq. 2.140 gives the probability of singlet molecular ground state |g1y to be in the

dressed bound state |Ey.

2.5.3 C(B) - Total probability of |g1y to be in the dressed continuum

In this section, we will evaluate the total probability CpBq of the singlet molecular

state |g1y to be in the dressed continuum. From the completeness relationship of

singlet state |g1y, we can write

|xE|g1y|
2
`
ÿ

k

|xEk|g1y|
2
“ 1. (2.141)

Using Eq. 2.123, we rewrite Eq. 2.141 as,

ZpBq ` CpBq “ 1, (2.142)

where

CpBq “
ÿ

k

|xEk|g1y|
2. (2.143)

Here, both Z and C is written with the explicit magnetic field dependency as ZpBq

and CpBq, respectively. Now, we proceed to evaluate CpBq. We convert the sum-

mation into integral and including the box normalization factor V , we have

CpBq “
V

p2πq3

ż 8

0

4πk2 dk |xEk|g1y|
2
“

ż 8

0

4πk2 dk |xg1|Ẽky|
2, (2.144)
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where Ẽk is the box normalized dressed continuum state and xEk|g1y “ xg1|Eky
˚.

We know from Eq. 2.6, the overlap xg1|Eky is given by the probability amplitude

c1. From Eq. 2.6 and Eq. 2.15, we get

c1 “
~ g˚pkq

Ek ´ Eg1 ´ ΣEpkq
cT pkq “ xg1|Eky. (2.145)

From Eq. 2.145, it follows

|xg1|Eky|
2
“

|~ gpkq|2

rEk ´ Eg1 ´ ΣEpkqs2
|cT pkq|

2. (2.146)

From Eq. 2.23, we get the box normalized overlap integral

|g̃pkq|2 ”
V

p2πq3
|gpkq|2. (2.147)

Using Eq. 2.147 in Eq. 2.146, we can write

|xg1|Ẽky|
2
”

V

p2πq3
|xg1|Eky|

2
“

|~ g̃pkq|2 |cT pkq|2

rEk ´ Eg1 ´ ΣEpkqs2
. (2.148)

Substituting the value of cT pkq from Eq. 2.54 in Eq. 2.148,

|xg1|Ẽky|
2
“

|~ g̃pkq|2

rEk ´ Eg1 ´ ΣEpkqs2 ` r2π2mk |g̃pkq|2s2
. (2.149)

Substituting Eq. 2.149 in Eq. 2.144, yields

CpBq “

ż 8

0

4πk2 dk
|~ g̃pkq|2

rEk ´ Eg1 ´ ΣEpkqs2 ` r2π2mk |g̃pkq|2s2
. (2.150)

Next we proceed to write CpBq in Eq. 2.150 in terms of the width ∆B and the

resonance position Bres of the Feshbach resonance. We define

x ” k|abg| (2.151)
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Ebg ”
~2

ma2
bg

(2.152)

Then the dressed continuum energy can be written as

Ek “ ET `
~2k2

m
“ ET ` Ebg x

2, (2.153)

We first proceed to evaluate the numerator |~ g̃pkq|2 in Eq. 2.150. Substituting

x ” k|abg| in Eq. 2.40, we get

|g̃pkq|2 “
|g̃p0q|2

1` x2
. (2.154)

From Eq. 2.66, we know

2µB|abg|∆B “ 2π2m |g̃p0q|2, (2.155)

Substituting Eq. 2.155 in Eq. 2.154, we get the numerator in Eq. 2.150

|~ g̃pkq|2 “
~2 µB ∆B |abg|

π2m p1` x2q
. (2.156)

Next we proceed to find the denominator in Eq. 2.150. We recall from Eq. 2.65,

ET ´ Eg1 ´ ΣEp0q “ ´2µB pB ´Bresq. (2.157)

We define ∆0 as

∆0 ”
2µB pB ´B8q

~
. (2.158)

Substitiuting Eq. 2.158 in Eq. 2.157, yields

ET ´ Eg1 ´ ΣEp0q “ ´~∆0. (2.159)

Using Eq. 2.153, we can write

Ek ´ Eg1 ´ ΣEpkq “ ET ´ Eg1 ` Ebgx
2
´ ΣEpkq. (2.160)
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Using Eq. 2.159 in Eq. 2.160 , we can write

Ek ´ Eg1 ´ ΣEpkq “ ´~∆0 ` ΣEp0q ` Ebgx
2
´ ΣEpkq. (2.161)

We need to evaluate the energy shift of the dressed continuum state ΣEpkq to

proceed further. From Eq. 2.16, we know

ΣEpkq “
ÿ

k1‰k

|~ gpk1q|2

pEk ´ E 1kq
. (2.162)

We change the summation in Eq. 2.162 into an integral,

ΣEpkq “ P
ż 8

´8

dk1 4π k12
|~ g̃pk1q|2

pEk ´ E 1kq
. (2.163)

Substituting Ek “ ~2 k2{m and E 1k “ ~2 k12{m in Eq. 2.163,

ΣEpkq “ P
ż 8

´8

dk1 4π k12
m| g̃pk1q|2

pk2 ´ k12q
. (2.164)

From Eq. 2.38, we know for |abg| ąą R,

|~g̃pk1q|2 “
V 2
HF R

π2

|abg|
2

1` k12 a2
bg

(2.165)

Substituting Eq. 2.165 in Eq. 2.164,

ΣEpkq “ 4πm
V 2
HF R |abg|

2

π2 ~2

«

P
ż 8

´8

dk1
k12

pk2 ´ k12q

1

1` k12 a2
bg

ff

. (2.166)

ΣEpkq “ 4πm
V 2
HF R

π2 ~2

„

P
ż 8

´8

dk1
k12

pk2 ´ k12q

1

pk1 ` i{abgqpk1 ´ i{abgq



. (2.167)

There are four poles in the integral for k1 in Eq. 2.166, namely, k1 “ ˘k and

k1 “ ˘i{abg. Using the contour integration method, we choose the upper half of
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the imaginary plane and evaluate the integral by calculating the residues of the

poles encompassed by the contour integral. The residues for k1 “ ˘k cancel. For

abg negative, we can write abg “ ´|abg|, so that the only pole that contributes is

k1 “ i{|abg|. Hence,

k'

z

i

abg

C

k- k

*

Figure 2.5: Contour Integral for ΣEpkq

ΣEpkq “ 4πm
V 2
HF R

π2 ~2
π i

„

lim
k1Ñi{|abg |

k12

pk2 ´ k12q

pk1 ´ i{|abg|q

pk1 ` i{|abg|qpk1 ´ i{|abg|q



“ 4πm
V 2
HF R

π2 ~2
πi

„

pi{|abg|q
2

pk2 ´ pi{|abg|q2q

1

pi{|abg| ` i{|abg|q



“ ´2π2m
V 2
HF R

π2 ~2

|abg|

p1` k2a2
bgq

(2.168)

Comparing Eq. 2.168 with Eq. 2.165, we obtain

ΣEpkq “ ´
2π2m |g̃pkq|2

|abg|
(2.169)

From Eq. 2.165, we know

g̃pkq “
g̃p0q

b

1` k2 a2
bg

(2.170)
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Substituting Eq. 2.170 in Eq. 2.169,

ΣEpkq “ ´
2π2m |g̃p0q|2

|abg| p1` k2 a2
bgq

(2.171)

From the definition of the width of the resonance in Eq. 2.66,

2µB|abg|∆B “ 2π2m |g̃p0q|2. (2.172)

Substituting Eq. 2.172 in Eq. 2.171, we obtain

ΣEpkq “ ´
2µB ∆B

1` k2 a2
bg

. (2.173)

Substituting x “ k|abg| in Eq. 2.174, we get

ΣEpkq “ ´
2µB ∆B

1` x2
. (2.174)

Hence

ΣEp0q “ ´2µB ∆B. (2.175)

We also define

∆̃0 ”
B ´Bres

∆B
. (2.176)

ε ”
Ebg

2µB∆B
, (2.177)

where Ebg “ ~2{ma2
bg is defined in Eq. 2.152. Substituting Eq. 2.174 to Eq. 2.177 in

Eq. 2.161, yields

Ek ´ Eg1 ´ ΣEpkq “ 2µB ∆B

„

´∆̃0 ` εx
2
´

x2

1` x2



. (2.178)
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We define

∆̃0pxq ” ∆̃0 ´ εx
2. (2.179)

Substituting Eq. 2.179 in Eq. 2.178, we get

Ek ´ Eg1 ´ ΣEpkq “ 2µB ∆B

„

´∆̃0pxq ´
x2

1` x2



. (2.180)

We write 2π2mk |g̃pkq|2 using Eq. 2.40 as

2π2mk |g̃pkq|2 “
2π2mx |g̃p0q|2

|abg|p1` x2q
. (2.181)

Using Eq. 2.66 in Eq. 2.181, yields

2π2mk |g̃pkq|2 “ 2µB∆B

„

x

1` x2



. (2.182)

Substituting Eq. 2.156, Eq. 2.180, and Eq. 2.182 in Eq. 2.150, and changing the

integral in k to an integral in x by using x “ k|abg|, we have

CpBq “

ż 8

0

dx
4πx2

|abg|3

~2

2π2m

|abg |

2µB∆B
1

1`x2

”

∆̃0pxq `
x2

1`x2

ı2

`
“

x
1`x2

‰2
. (2.183)

Using Eq. 2.177 and Eq. 2.179 in Eq. 2.183 yields

CpBq “ ε
2

π

ż 8

0

dxx2

r∆̃0 ´ εx2s2 ` x2r1` ∆̃0 ´ εx2s2
. (2.184)

CpBq in Eq. 2.184 gives the total probability of the singlet molecular ground |g1y

to be in the dressed continuum.
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2.5.4 Z(B) and C(B) near the broad and narrow Feshbach resonance in 6Li

In this section, we will study the behavior of Z(B) and C(B) near the broad and

narrow Feshbach resonance in 6Li and test the validity of the expressions ZpBq and

CpBq by comparing them with the completeness relationship of singlet state the |g1y.

From the completeness relationship of singlet state |g1y in Eq. 2.142 ,we know

ZpBq ` CpBq “ 1, (2.185)

where CpBq is given in Eq. 2.184 and ZpBq is given in Eq. 2.140.

Fig. 2.6 shows the plot of ZpBq (Eq. 2.140) and CpBq (Eq. 2.184) for the broad

Feshbach resonance and the narrow Feshbach resonance in 6Li near 832.2 G and 543.2

G, respectively. The black horizontal dashed line is the sum of ZpBq and CpBq. We

can see that the sum adds to 1, as it should, substantiating the expressions for ZpBq

and CpBq derived in this section.

Also, we can see that ZpBq “ 0 above resonance due to the absence of the bound

state. Hence, above resonance, there is no singlet molecular population. However,

above resonance CpBq Ñ 1 indicating that the dressed continuum state |Eky has

a strong admixture of the singlet state |g1y. Furthermore, we can also see that in

the case of broad Feshbach resonance, ZpBq Ñ 1 as B Ñ 400 G, which is similar

to the results reported in [60]. The behavior of Z(B) and C(B) as a function of

the magnetic field derived from the dressed states |Eky and |Ey is one of the most

important results of our theory.

2.5.5 Molecular binding energy Em

In the previous section, we used the singlet bound state wave function to derive the

singlet molecular fraction Z. In this section, we will derive the molecular binding

energy Em of the singlet molecules.
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Figure 2.6: ZpBq (blue curve) and CpBq (red curve) for the broad Feshbach
resonance (top) and the narrow Feshbach resonance (bottom) in 6Li.

We define the molecular binding energy Em ą 0 as

Em “ ET ´ E. (2.186)

Substituting Eq. 2.186 in Eq. 2.82 for energy shift of the bound state,

ET ´ Eg1 ´ Em “ ΣpEq. (2.187)

We rewrite Eq. 2.187 by adding and subtracting the zero momentum energy shift of
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the dressed continuum ΣEp0q

´Em “ Eg1 ´ ET ` ΣEp0q ` ΣpEq ´ ΣEp0q. (2.188)

We recall from Eq. 2.157 and Eq. 2.158 that

Eg1 ´ ET ` ΣEp0q “ 2µBpB ´B8q “ ~∆0. (2.189)

Substituting Eq. 2.189 in Eq. 2.188, we get

´Em “ ~∆0 ´ ΣEp0q ` ΣpEq. (2.190)

Using ΣEp0q “ ´2µB ∆B (Eq. 2.175) and Eq. 2.137, we can write the energy shift

of the dressed bound state ΣpEq in terms of the zero momentum energy shift ΣEp0q

as

ΣpEq “
ΣEp0q

1`
b

ET´E
Ebg

. (2.191)

Substituting Eq. 2.191 in Eq. 2.190, yields

´Em “ ~∆0 ´ ΣEp0q

„

1´
1

1`
b

ET´E
Ebg



. (2.192)

Using Eq. 2.186 in Eq. 2.192,

´Em “ ~∆0 ´ ΣEp0q

b

Em
Ebg

1`
b

Em
Ebg

. (2.193)

Dividing Eq. 2.193 by Ebg where Ebg “ ~2{ma2
bg, yields

´
Em
Ebg

“
~∆0

Ebg
´

ΣEp0q

Ebg

b

Em
Ebg

1`
b

Em
Ebg

. (2.194)
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Figure 2.7: Binding energy Em in units of Ebg near the broad Feshbach resonance
in 6Li (ε “ 0.00036) by self consistently solving Eq. 2.198.

Using Ẽm “ Em{Ebg in Eq. 2.194, we have

´Ẽm “
~∆0

Ebg
´

ΣEp0q

Ebg

a

Ẽm

1`
a

Ẽm
. (2.195)

Using Eq. 2.158 and Eq. 2.175, we rewrite Eq. 2.195 as

´Ẽm “
2µBpB ´B8q

Ebg
`

2µB ∆B

Ebg

a

Ẽm

1`
a

Ẽm
. (2.196)

Using ε ” Ebg{2µB∆B (Eq. 2.177) in Eq. 2.195,

´Ẽm “
1

ε

2µBpB ´B8q

2µB ∆B
`

1

ε

2µB ∆B

2µB ∆B

a

Ẽm

1`
a

Ẽm
. (2.197)

Using ∆̃0 defined in Eq. 2.176 in Eq. 2.197, we obtain finally

ε Ẽm ` ∆̃0 `

a

Ẽm

1`
a

Ẽm
“ 0 (2.198)
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We can evaluate the molecular binding energy for B ă Bres (∆̃0 ă 0) by self consis-

tently solving Eq. 2.198 for Ẽm as a function of ∆̃0. Fig. 2.7 shows a plot of binding

energy Em as a function of the magnetic field near the broad Feshbach resonance

(ε “ 0.00036) in 6Li.

2.6 Summary: Physical significance of the dressed states |Ey and |Eky

In this section, I will discuss the physical significance of the dressed states |Ey and

|Eky and further argue that the dressed states are not just chosen for mathematical

convenience but have real physical meaning based on the results reported by [63].

Let me start by summarizing the big picture that has led us here. We started with

the bare states responsible for the Feshbach resonance, namely, the bound singlet

state |g1y and the triplet continuum |T, ky. The mixing of |g1y with |T, ky due to

hyperfine coupling leads to a Feshbach resonance. We treated this mixing using the

continuum-dressed state picture, where the mixing of |g1y with |T, ky leads to two

dressed states, namely, the dressed continuum |Eky and the dressed bound state |Ey.

The atoms are initially prepared in the triplet continuum |T, ky. However, near the

Feshbach resonance, a fraction of the atoms, will populate the dressed bound state

|Ey and form singlet ground state dressed molecules. The amount of singlet character

in the dressed molecules is given by ZpBq. The remaining fraction of unbound free

atoms populates the dressed continuum states.

2.6.1 Above Feshbach resonance - BCS side

Above the Feshbach resonance (Fig. 2.6), ZpBq Ñ 0 and CpBq Ñ 1, indicating

the absence of dressed bound state |Ey. Therefore, above the Feshbach Resonance,

there are no singlet dressed molecules. However, since CpBq Ñ 1, the free atoms in

dressed continuum states will have singlet character associated with them. This is

easily verified by a simple experiment where an optical field illuminates the atoms to
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couple the dressed continuum to the singlet excited state. If there is no admixture

of |g1y with |Eky, there should be no excitation of the atoms to the excited state,

since a transition from the spin “triplet” state to the spin “singlet” state is forbidden

by the selection rules. However, as reported in [63] and later in this thesis, the free

atoms which are originally prepared in the “triplet” state are pumped to a “singlet”

excited state due to the strong admixture of singlet state |g1y with dressed continuum

|Eky. This process, where free atoms in the continuum, are coupled to an excited

bound state through an optical field is called photoassociation. Above the Feshbach

resonance, photoassociation causes atom loss, as the atoms in the dressed continuum

state are pumped into the singlet excited state and are subsequently lost due to

spontaneous scattering to different lower lying vibrational states.

2.6.2 Below Feshbach resonance - BEC side

Below the Feshbach resonance, at low temperatures, a fraction of the total atoms

populates the dressed bound state |Ey forming dressed molecules and the remain-

ing fraction remains as free atoms in the dressed continuum state. The amount of

singlet character in the dressed molecules is given by ZpBq. In order to observe the

singlet molecular fraction in the dressed bound state, experiments should be done at

low temperatures, such that the thermal energy does not break the molecular pairs

causing them to decay into the dressed continuum as free atoms. Below the Fesh-

bach resonance, when an optical field is shined on the atoms to couple the dressed

continuum to the singlet excited state, atom loss occurs due to the following

(i) Photoassociation of free atoms from the dressed triplet continuum to the bound

singlet excited state

(ii) Pumping of singlet ground state molecules from the dressed bound state to the

singlet excited state.

In the above two processes, the transition rate for the photoassociation of free
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atoms is much slower compared to the direct pumping of singlet molecules, since

the molecules reside in the dressed bound state |Ey which is predominantly singlet

in character and the free atoms reside in the dressed continuum states. This was

clearly observed in the experiment done by [63], where they observe, at low tem-

peratures, both a slow photoassociation loss and a fast decay due to the pumping of

singlet molecules to the singlet excited state.

In summary, the dressed state |Ey exists only below the Feshbach resonance

on the BEC side and is populated by singlet ground state molecules. The dressed

state |Eky exists both below (BEC side) and above (BCS side) the magnetic Feshbach

resonance and is populated by free unbound atoms which have a admixture of singlet

character.

In the next chapter, the dressed states |Ey and |Eky will further be used as the

basis states for the continuum-dressed state model of optical control. We will use

the continuum-dressed state model to study a two-field optical method in detail to

control interactions in an ultracold Fermi gas near a magnetic Feshbach resonance.
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3

Continuum-Dressed State Model

In this chapter, we introduce the basic level scheme for the two-field optical method

to control magnetic Feshbach resonances and a new theoretical model to calculate

the scattering phase shift. Implementation of optical control methods requires an un-

derstanding of the optically-induced level structure and energy shifts, which depend

on the relative momentum of a colliding atom pair.

In optical control of interactions, optical fields couple the singlet ground molecular

state that has an hyperfine coupling to the triplet continuum to an excited molecular

state (Chapter 1). Previous work from this group as well as other groups used a bare-

state basis to determine the scattering state from which the scattering phase shift in

the presence of optical fields is calculated [9, 49, 53, 56]. A central assumption in this

approach is that the probability amplitude of the excited state tracks the probability

amplitude of the ground state, permitting the adiabatic elimination of the excited

state. This assumption is valid when the hyperfine coupling VHF {h between the

triplet continuum and the singlet ground state is small compared to the linewidth

of the excited molecular state γe. For example, in the case of the narrow Feshbach

resonance in 6Li at 543.2 G, where VHF {h “ 5.9 MHz and γe “ 11.8 MHz , we
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can use the bare-state basis to solve for the scattering state. However, for broad

Feshbach resonances like the resonance in 6Li at 832.2 G where VHF {h “ 131.6

MHz, this approach breaks down, because adiabatic elimination of the excited state

is no longer valid and leads to predictions that are in strong disagreement with the

measurements [49].

In order to circumvent this problem, we introduce a continuum-dressed state

model where the eigenstate basis is constructed as a result of “dressing” the bare-state

basis by the hyperfine interaction. As the “continuum-dressed” basis already includes

the hyperfine coupling in the eigenstate basis of the unperturbed Hamiltonian, the

validity of the adiabatic elimination becomes independent of VHF . In addition, the

continuum-dressed state model provides a comprehensive treatment in calculating the

scattering phase shift taking into account the relative momentum dependance, which

can be different for broad and narrow Feshbach resonances. Using the continuum-

dressed state basis, we solve the time dependent Schrödinger equation and determine

the optically induced phase shift φ and the total phase shift δ, which is the sum of

optically induced phase shift φ and the phase shift ∆ due to the magnetic Feshbach

resonance (chapter 2 Eq. 2.53).

3.1 Two-field optical method: Level scheme

The basic level scheme for the two-field optical technique is shown in Fig. 5.4. An

optical field with Rabi frequency Ω1 and frequency ω1 couples the ground vibrational

state |g1y of the singlet 1Σ`g potential to the excited vibrational state |ey of the

singlet 1Σ`u potential. A second optical field with Rabi frequency Ω2 and frequency

ω2 couples a lower lying ground vibrational state |g2y to the excited vibrational state

|ey. The ω1 beam results in a light shift of state |g1y as well as atom loss due to

photoassociation from the triplet continuum |T, ky, which is hyperfine coupled to |g1y

and hence optically coupled to the excited state |ey. The ω2 beam suppresses atom
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Figure 3.1: Basic level scheme for the two-field optical technique. Optical fields of
frequencies ω1 (detuning ∆1) and ω2 (detuning ∆2) , respectively, couple two singlet
ground molecular states |g1y and |g2y to the singlet excited molecular state |ey; VHF
is the hyperfine coupling between the incoming atomic pair state in the open triplet
channel |T, ky and |g1y, which is responsible for a magnetically controlled Feshbach
resonance.

loss through destructive quantum interference as discussed below. In a magnetic

field B, the triplet continuum |T, ky tunes downward 9 2µB B, where µB is the

Bohr magneton, µB{h » hˆ1.4 MHz/G. The hyperfine coupling VHF between |T, ky

and |g1y produces a Feshbach resonance. For our experiments with 6Li, |g1y and |g2y

are the v “ 38 and v “ 37 ground vibrational states and |ey is the v1 “ 68 excited

vibrational state, which decays at a rate γe “ 2π ˆ 11.8 MHz.

3.2 Bare-state basis and continumm-dressed state basis

In previous calculations by our group [49, 53], interaction of the colliding atom pair

with the optical fields is described in the “bare” state basis, Fig. 3.2a, with singlet

states, |g1y, |g2y, and |ey, and triplet continuum states |T, ky. For our calculations,

we employ instead the continuum-dressed state basis, Fig. 3.2b. The bare states |g1y

and |T, ky, are replaced by the dressed bound state |Ey and the Feshbach resonance
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Figure 3.2: Level schemes in (a) “bare-state” and (b) “continuum-dressed-state”
bases. |g1y, |g2y, and |ey are the bare molecular states in the energetically closed
(singlet) channel. |T, ky is a bare continuum state in the open (triplet) channel. The
hyperfine interaction VHF couples the bare molecular state |g1y and the continuum
states |T, ky, creating the “continuum-dressed” bound state |Ey and the (Feshbach
resonance) scattering state |Eky.

scattering state |Eky, chapter 2. The optical field with frequency ω1 couples the

dressed-bound state |Ey and the dressed-continuum state (Feshbach resonance scat-

tering state) |Eky to the singlet excited state |ey, since both states contain singlet

|g1y contributions. The second optical field with frequency ω2 couples the singlet

state |g2y to the excited state |ey. These dressed states already contain the hyperfine

coupling constant VHF , permitting consistent adiabatic elimination of the excited

state amplitude |ey, even for broad Feshbach resonances where VHF is large. The

new model shows that the light-shifts arising from the Ω1 beam have a different rel-

ative momentum (k) dependence for broad resonances than for narrow resonances.

Further, it reproduces previous calculations [9, 49, 53] that are valid only for narrow

resonances and avoids predictions for the loss rate of a spurious broad resonance

at the resonance magnetic field Bres that arises when narrow resonance results are

incorrectly applied to broad resonances.
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3.3 Optical control: Continuum-dressed basis

In this section, we solve the time dependent Schrödinger equation using the continuum-

dressed state basis states, which was determined in chapter 2. In the absence of

optical fields, the unperturbed Hamiltonian of the four-level system, Fig. 3.2b, in the

continuum-dressed state basis can be written as,

H0 “ E|EyxE| ` Eg2 |g2yxg2| ` Ee|eyxe| `
ÿ

all k1

Ek1 |Ek1yxEk1 |, (3.1)

where |Ek1y is an atom pair dressed continuum scattering state, |Ey is the dressed

bound state due to the coupling of the bare bound singlet Feshbach state |g1y with

the bare triplet continuum scattering states |T, k1y, |g2y is a lower lying molecular

bound singlet state that has no coupling to |T, k1y , and |ey is the singlet excited

state.

For the perturbation arising from the optical transition, we can assume that

the ground singlet states |g1y and |g2y have identical spin structure, as the optical

transitions |g1y Ñ |ey Ñ |g2y do not change the electron-nuclear spin state. In the

rotating wave approximation, the Hamiltonian due to the presence of optical fields

is

H 1
opt “ ´

~Ω1

2
e´iω1t|eyxg1| ´

~Ω2

2
e´iω2t|eyxg2| ` h.c., (3.2)

where ω1 and Ω1 are the angular and Rabi frequencies of the optical field that couples

|g1y to |ey, and ω2 and Ω2 are the angular and Rabi frequencies of the optical field

that couples |g2y to |ey, respectively.

In thermal equilibrium, for H 1
opt “ 0, let |Eky be the input scattering Feshbach

resonance state. For H0 in the diagonal basis with H 1
opt ‰ 0, the time-dependent

scattering state then takes the form,

|ψEkptqy “ cEptq |Ey ` c2ptq |g2y ` ceptq|ey ` cpk, tq |Eky `
ÿ

k1‰k

cpk1, tq |Ek1y, (3.3)
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where cT pk, tq is the amplitude for the input Feshbach resonance scattering state

|Eky. For box normalized continuum states,

xE|Eky “ 0, xE|Ey “ 1, xEk|Ek1y “ δk1k.

From the time-dependent Schrödinger equation,

pHo `H
1
optq|ψEkptqy “ i~ Bt|ψEkptqy, (3.4)

we solve for the coefficients in |ψEkptqy by taking the projections of Eq. 3.4 on the

basis states. For |Ey, this gives using Eq. 3.2

i~ 9cE “ xE|pHo `H
1
optq|ψEkptqy “ E cE ` xE|H

1
opt|ψEkptqy,

i~ 9cE “ E cE ´
~Ω˚1

2
eiω1txE|g1y ce. (3.5)

Similarly, taking projection of |g2y, |Ek1y, and |ey on Eq. 3.4 with Eq. 3.2, we

obtain

i~ 9c2 “ Eg2 c2 ´
~Ω˚2

2
eiω2txE|g1y ce, (3.6)

i~ 9cpk1q “ Ek1 cpk
1
q ´

~Ω˚1
2

eiω1txEk1 |g1y ce, (3.7)

i~ 9ce “ Ee ce ´
~Ω1

2
e´iω1t

«

xg1|Ey cE `
ÿ

all k1

xg1|Ek1ycpk
1
q

ff

´
~Ω2

2
e´iω2tc2 ´ i

~γe
2
ce. (3.8)

In Eq. 3.8, a decay term ´γe ce{2 is added to the 9ce equation, describing the radiative

decay of the excited state to the ground vibrational manifold.

In the limit, r Ñ 8, the asymptotic (triplet) scattering state must be an eigen-

state of H with a total energy Ek “ ET ` ~2k2{m, where ET “ ´aHF {2 ´ 2µB B is
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the energy of the triplet state and ~2k2{m is the relative kinetic energy between an

atom pair. Therefore, we seek solutions where cpk1, tq “ bpk1q expp´iEkt{~q, where

bi are slowly varying amplitudes. Forcing ce “ be expr´ipω1 ` Ek{~qts removes all

time-dependent phase factors in Eq. 3.7, yielding

i~ 9bpk1q “ pEk1 ´ Ekq bpk
1
q ´

~Ω˚1
2
xEk1 |g1y be. (3.9)

Similarly, using ce “ be expr´ipω1 ` Ek{~qts and cE “ bE expp´iEkt{~q in Eq. 3.8,

and forcing c2 “ b2 expripω2´ω1´Ek{~qts to eliminate the resulting time-dependent

exponential factors, gives,

i~ 9be “ pEe ´ Ek ´ ~ω1q be ´ i
~γe
2
be ´

~Ω2

2
b2

´
~Ω1

2

«

xg1|Ey bE `
ÿ

all k1

xg1|Ek1ybpk
1
q

ff

. (3.10)

From Eq. 3.5 and Eq. 3.6, we get

i~ 9bE “ pE ´ Ekq bE ´
~Ω˚1

2
xE|g1y be (3.11)

i~ 9b2 “ rEg2 ´ Ek ´ ~pω1 ´ ω2qs b2 ´
~Ω˚2

2
be (3.12)

3.3.1 Adiabatic approximation

In this section, we will find all the amplitudes bi in terms of input amplitude bpkq. As

the large hyperfine coupling constant is already included in the basis set, for Ω1 not

too large compared to the excited state decay rate, we can adiabatically eliminate

the excited state amplitude be. Hence, substituting 9be “ 0 in Eq. 3.10 gives

„

pEe ´ Ek ´ ~ω1q ´ i
~γe
2
q



be “
~Ω2

2
b2

`
~Ω1

2

«

xg1|Ey bE `
ÿ

all k1

xg1|Ek1ybpk
1
q

ff

.(3.13)
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From Eq. 3.13 we can see be tracks bpk1q, bE, and b2. Further, we assume 9bi “ 0 for

the slowly varying amplitudes, similar to the method employed in Ref. [49]. Hence

substituting 9bpk1q “ 0, 9bE “ 0, and 9b2 “ 0 in Eq. 3.9, Eq. 3.11, and Eq. 3.12,

respectively, gives

bE “
~Ω˚1

2pE ´ Ekq
xE|g1y be, (3.14)

bpk1 ‰ kq “
~Ω˚1

2pEk1 ´ Ekq
xEk1 |g1y be, (3.15)

b2 “
~Ω˚2

2rEg2 ´ Ek ´ ~pω1 ´ ω2qs
be. (3.16)

Using Eq. 3.14, Eq. 3.15, and Eq. 3.16 in Eq. 3.13, we get

”

pEe ´ Ek ´ ~ω1q ´ i~
γe
2

ı

be ´

∣∣∣∣~Ω1

2

∣∣∣∣2
#

|xg1|Ey|
2

E ´ Ek
`

ÿ

k1‰k

|xg1|Ek1y|
2

Ek1 ´ Ek

+

be

´

∣∣∣∣~Ω2

2

∣∣∣∣2 be
Eg2 ´ Ek ´ ~pω1 ´ ω2q

“
~Ω1

2
xg1|Eky bpkq.

(3.17)

Rewriting Eq. 3.17,

be “
~Ω1

2

xg1|Eky|

DpE,Ekq
bpkq, (3.18)

where DpE,Ekq in Eq. 3.18 is given by

DpE,Ekq “ Ee ´ Ek ´ ~ω1 ´ i~
γe
2
´

∣∣∣∣~Ω1

2

∣∣∣∣2
#

|xg1|Ey|
2

E ´ Ek
`

ÿ

k1‰k

|xg1|Ek1y|
2

Ek1 ´ Ek

+

´

∣∣∣∣~Ω2

2

∣∣∣∣2 1

Eg2 ´ Ek ´ ~pω1 ´ ω2q
. (3.19)
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Substituting Eq. 3.18 in Eq. 3.14 and Eq. 3.15 gives,

bE “

∣∣∣∣~Ω1

2

∣∣∣∣2 xE|g1yxg1|Eky

pE ´ EkqDpE,Ekq
bpkq, (3.20)

b pk1 ‰ kq “

∣∣∣∣~Ω1

2

∣∣∣∣2 xEk1 |g1yxg1|Eky

pEk1 ´ EkqDpE,Ekq
bpkq. (3.21)

For k1 “ k, Substituting Eq. 3.18 in Eq. 3.9 gives;

9bpkq “
i~ |Ω1|2

4

|xg1|Eky|
2

DpE,Ekq
bpkq (3.22)

3.4 Scattering state wave function

For r Ñ 8, the bound state contributions vanish i.e., xr|ey “ 0 , xr|g2y “ 0, and

xr|Ey “ 0. Hence the scattering state is determined only by the triplet part of the

wavefunction. The triplet continuum part of the scattering state takes the form

ΨEkpr Ñ 8q expp´iEkt{~q. Taking the projection of |ry on Eq. 3.3 and removing

the time-dependent phase factors by substituting the coefficients ck and ck1 in terms

of bk and bk1 ,

xr Ñ 8|ΨEky “ ΨEkpr Ñ 8q “ bpkq xr Ñ 8|Eky `
ÿ

k1‰k

bpk1q xr Ñ 8|Ek1y. (3.23)

As r Ñ 8, from chapter 2, we write the dressed continuum state wave function

with box normalization as

xr Ñ 8|Ek1y “
1
?
V

rsinpk1r `∆pk1qqs

k1r
, (3.24)

where the factor 1{
?
V is needed for box normalization, and ∆pk1q is the phase shift

induced due to the Feshbach resonance, which can be written as the sum of the

resonant part of the phase shift ∆̃pk1q and the background part of the phase shift
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δbgpk
1q.

∆pk1q “ ∆̃pk1q ` δbgpk
1
q. (3.25)

Substituting Eq. 3.21 and Eq. 3.24 in Eq. 3.23, we get

ΨEkpr Ñ 8q “
bpkq

kr
?
V

„

sinpkr `∆pkqq

`
ÿ

k1‰k

~2|Ω2
1|

4

xEk1 |g1y |xg1|Eky

pEk1 ´ EkqDpE,Ekq

k

k1
sinpk1r `∆pkqq



. (3.26)

We define the second term in Eq. 3.26 to be Spkq,

Spkq ”
ÿ

k1‰k

~2|Ω2
1|

4

xEk1 |g1y |xg1|Eky

pEk1 ´ EkqDpE, kq

k

k1
sinpk1r `∆pk1qq. (3.27)

Spkq is evaluated by converting the summation into a integral in Eq. 3.27 using,

ÿ

k1‰k

Ñ P
ż

d3~k1
V

p2πq3
“ P

ż 8

0

dk14πk
12 V

p2πq3
. (3.28)

where P denotes the principal part (k1 ‰ k). Using Eq. 3.28 in Eq. 3.27, we obtain

Spkq “ P
ż 8

0

dk14πk
12 V

p2πq3
~2|Ω2

1|

4

xEk1 |g1y |xg1|Eky

pEk1 ´ EkqDpE, kq

k

k1
sinpk1r `∆pk1qq. (3.29)

We define (see chapter 2),

V

p2πq3
xEk1 |g1y xg1|Eky ” xẼk1 |g1y xg1|Ẽky, (3.30)

where |Ẽky is the dressed continuum state for continuum normalization, which is

independent of V. Using Eq. 3.30 in Eq. 3.29, yields

Spkq “
~2Ω2

1

4

2πmk

~2
xg1|Ẽky P

ż 8

0

dk1k1rsinpkr `∆pk1qqs

k12 ´ k2
xẼk1 |g1y . (3.31)
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Using the effective range expansion for phase shift ∆ (chapter 2 Eq. 2.56), we

write

k1 cot ∆ “ ´
1

a
`
re
2
k12, (3.32)

From Eq. 3.32, we can see that ∆ is an odd function in k1, since the right hand side is

an even function in k1. Therefore, Eq. 3.24 is an even function in k1, which makes the

integrand in Eq. 3.31 an even function in k1. Hence, using
ş8

0
“ 1

2

ş8

´8
in Eq. 3.31,

Spkq “
~2Ω2

1

4

2πmk

~2
xg1|Ẽky P

ż 8

´8

dk1k1rsinpk1r `∆pk1qqs

k12 ´ k2
xẼk1 |g1y . (3.33)

As shown in Appendix A Eq. A.27, the function e˘i∆pk
1qxẼk1 |g1y has no poles on

the real axis. Hence, for poles on either the upper half or lower half of the imaginary

axis, k1 “ ˘iq, where q ą 0, and e˘ik
1r takes the form e´qr. Therefore, as r Ñ 8,

eik
1r Ñ 0 for poles not on the real axis. Hence, as r Ñ 8, only the poles on real axis,

k1 “ ˘k, contribute. Therefore,

xg1|ẼkyxẼk1 |g1y Ñ |xg1|Ẽky|
2 for k1 “ k (3.34)

Substituting Eq. 3.34 in Eq. 3.33,

Spkq “
~2Ω2

1

4

2πmk

~2
|xg1|Ẽky|

2 P
ż 8

´8

dk1k1rsinpkr `∆pk1qqs

k12 ´ k2
. (3.35)

We reduce Eq. 3.35 further by finding the principal part of the integral. We let

Ipkq ” P
ż 8

´8

dk1k1rsinpk1r `∆pk1qqs

k12 ´ k2
, (3.36)

Ipkq “ Im

"

P
ż 8

´8

dk1k1reik
1r`∆pk1qs

k12 ´ k2

*

“ Im tI1u . (3.37)
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Z

I 1

Figure 3.3: Contour Integral for I1

Solving for I1 using the contour integral method (Fig. B.1),

¿

dz “ I1 ´ πi rResp´kqs ´ πi rRespkqs “ 0, (3.38)

I1 “ πi rResp´kqs ` πi rRespkqs . (3.39)

Using Cauchy residue theorem,

I1 “ lim
k1Ñ´k

πi
k1pk1 ` kq

pk1 ´ kqpk1 ` kq
eik

1r`∆pk1q
` lim

k1Ñk
πi

k1pk1 ´ kq

pk1 ´ kqpk1 ` kq
eik

1r`∆pk1q.(3.40)

Eq. 3.40 reduces to,

I1 “ iπ cosrkr `∆pkqs. (3.41)

Using Eq. 3.41, Eq. 3.37, and Eq. 3.36 in Eq. 3.35, gives

Spkq “
π2mkΩ2

2
|xg1|Ẽky|

2cosrkr `∆pkqs. (3.42)

Using Eq. 3.42 in Eq. 3.26, we obtain the expression for the wavefunction of the

scattering state,

ΨEkpr Ñ 8q “
bpkq

kr
?
V

«

sinpkr `∆pkqq `
Ω2

1

4

2π2mk|xg1|Ẽky|
2

DpE,Ekq
cospkr `∆pkqq

ff

.(3.43)
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From Eq. 3.43, we can extract the optically induced phase shift. However, the ex-

pression for the wavefunction contains the energy denominator DpE,EKq. Before we

proceed to deduce the optically induced phase shift, we have to evaluate DpE,EKq,

which will be the focus of the next section.

3.5 Evaluating the energy denominator DpE,EKq

In this section, we will evaluate the energy denominator DpE,EKq in Eq. 3.43. Ex-

pressing DpE,Ekq in terms of its real and imaginary parts, we define

DpE,Ekq “ ´D
1
pE,Ekq ´ i~

γe
2
. (3.44)

Comparing Eq. 3.44 and Eq. 3.19,

D1pE,Ekq “ ~ω1 ´ pEe ´ Ekq `

ˇ

ˇ

ˇ

ˇ

~Ω2

2

ˇ

ˇ

ˇ

ˇ

2
1

Eg2 ´ Ek ´ ~pω1 ´ ω2q

`

ˇ

ˇ

ˇ

ˇ

~Ω1

2

ˇ

ˇ

ˇ

ˇ

2
#

|xg1|Ey|
2

E ´ Ek
`

ÿ

k1‰k

|xg1|Ek1y|
2

Ek1 ´ Ek

+

. (3.45)

We define IE and IEK

IE ”
|xg1|Ey|

2

Ek ´ E
“

|xg1|Ey|
2

ET ´ E `
~2k2

m

, (3.46)

IEk ”
ÿ

k1‰k

|xg1|Ek1y|
2

Ek1 ´ Ek
, (3.47)

where IE is the dressed bound state contribution as it involves the overlap integral

xg1|Ey and IEK is the dressed continuum contribution as it involves the overlap
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integral xg1|Eky. Substituting Eq. 3.46 and Eq. 3.47 in Eq. 3.48, we obtain

D1pE,Ekq “ ~ω1 ´ pEe ´ Ekq `

ˇ

ˇ

ˇ

ˇ

~Ω2

2

ˇ

ˇ

ˇ

ˇ

2
1

Eg2 ´ Ek ´ ~pω1 ´ ω2q

`

ˇ

ˇ

ˇ

ˇ

~Ω1

2

ˇ

ˇ

ˇ

ˇ

2

pIEk ´ IEq (3.48)

We define the single photon detuning ∆e for the |T y ´ |ey transition as,

∆e ” ω1 ´
Ee ´ Ek

~
, (3.49)

where

Ek “ ET `
~2k2

m
and ET “ ´

aHF
2
´ 2µBB. (3.50)

Substituting Eq. 3.50 in Eq. 3.49,

∆e “ ω1 ´
Ee `

aHF
2
` 2µBB

~
`

~k2

m
. (3.51)

We can see from Eq. 3.51, ∆e has the energy Ee in it. However, we would like

to define the detunings in terms of only measured quantities. Hence, we define the

laser detuning ∆L for the |T y ´ |ey transition at a reference B-field Bref

∆L ” ω1 ´
Ee `

aHF
2
` 2µBBref

~
. (3.52)

Subtracting Eq. 3.52 from Eq. 3.51, we write

∆e “ ∆L ´
2µBpB ´Bref q

~
`

~k2

m
(3.53)

We define the two-photon detuning for the |g2y ´ |T y ´ |ey transition as

δe ” ω2 ´ ω1 ´
Ek ´ Eg2

~
(3.54)
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Substituting Eq. 3.50 in Eq. 3.54, we obtain

δe “ ω2 ´ ω1 `

aHF
2
` 2µBB ´ Eg2

~
´

~k2

m
(3.55)

Similar to ∆e, we would like to define δ in terms of measured quantities. Therefore,

we define the laser detuning ∆2 for the |g2y ´ |ey transition as

∆2 ” ω2 ´
Ee ´ Eg2

~
(3.56)

Using Eq. 3.56 and Eq. 3.51 in Eq. 3.55,

δe “ ∆2 ´∆e (3.57)

Substituting Eq. 3.53 in Eq. 3.57, yields

δe “ ∆2 ´∆L `
2µBpB ´Bref q

~
´

~k2

m
(3.58)

For later use, we define x “ k|abg| and explicitly write the momentum dependance in

the single photon detuning ∆e and two-photon detuning δe in terms of x. Therefore,

we write

∆epxq “ ∆L ´
2µBpB ´Bref q

~
`

~x2

m|abg|2
(3.59)

δepxq “ ∆2 ´∆L `
2µBpB ´Bref q

~
´

~x2

m|abg|2
(3.60)

From the definition of the single photon detuning ∆e (Eq. 3.49) and the two-

photon detuning δe (Eq. 3.54), we can write the expression for D1pE,Ekq in a sim-

plified form. Substituting Eq. 3.49 and Eq. 3.54 in Eq. 3.48, we have

D1pE,Ekq

~
“ ∆epxq `

Ω2
2

4 δepxq
`

~Ω2
1

4
pIEk ´ IEq. (3.61)

Next we proceed to evaluate the integrals IE and IEk .
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3.5.1 Dressed bound state shift IE

In this section, we will evaluate the dressed bound state shift integral IE for the

broad and narrow Feshbach resonance in 6Li. From chapter 2, we know that the

probability of the singlet state |g1y to be in the dressed bound state |Ey is given by

Eq. 2.90

Z “ |xg1|Ey|
2, (3.62)

and the molecular binding energy for B ă Bres is given by Eq. 2.186

Em “ ET ´ E. (3.63)

We use Eq. 3.62 and Eq. 3.63 to rewrite the expression of IE in Eq. 3.46 as

IE “
|xg1|Ey|

2

ET ´ E `
~2k2

m

“
Z

Em `
~2k2

m

θrBres ´Bs, (3.64)

where the heavyside theta function θrBres´Bs imposes the condition that the molec-

ular binding energy exists for only B ă Bres.

As in chapter 2, we define

Ẽm “
Em
Ebg

Ebg “
~2

ma2
bg

x2
“ k2a2

bg “
~2k2

mEbg

ε “
Ebg

2µB∆B
(3.65)

Substituting Eq. 3.65 in Eq. 3.64, yields

IE “
2µB∆B

ε

Z

Ẽm ` x2
θrBres ´Bs. (3.66)
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We define

ĨE ”
1

2µB∆B
IE “

1

ε

Z

Ẽm ` x2
θrBres ´Bs. (3.67)

For the cases of the broad and narrow resonances in 6Li, ε “ 0.00036 and ε “ 555,

respectively. From chapter 2 Eq. 2.140, we know that Z ‰ 0 for B ă B8 and Z is

given by

Z “
1

1` µB∆B
Ebg

b

Ebg
ET´E

1

p1`

c

ET´E

Ebg
q2

. (3.68)

Using Eq. 3.63 and Eq. 3.65, we rewrite Eq. 3.68

Z “
1

1`
1

2ε
a

Ẽmp1`
a

Ẽmq2

, (3.69)

From chapter 2 Eq. 2.198, we know that Ẽm satisfies,

εẼm ` ∆̃0 `

a

Ẽm

1`
a

Ẽm
“ 0, (3.70)

where ∆̃0 “ pB´Bresq{∆B. The next step is to evaluate ĨE separately for the broad

and the narrow Feshbach resonances.

For the broad resonance, ε ăă 1 since ∆B “ 300 G. Hence, the expression for Z

in Eq. 3.69 for εÑ 0 becomes,

Z “ 2ε

b

Ẽm p1`

b

Ẽmq
2, (3.71)

and Eq. 3.70 for εÑ 0 gives

Ẽm “
1

ˆ

1`
1

∆̃0

˙2 . (3.72)
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We use ´∆̃0 “ |∆̃0| for ∆̃0 ă 0 in Eq. 3.72 and obtain

b

Ẽm “
|∆̃0|

|1` ∆̃0|
. (3.73)

Using Eq. 3.71 and Eq. 3.73 in Eq. 3.67, we have for the broad resonance,

ĨE “
2 θr´∆̃0s θr1` ∆̃0s

∆̃2
0 ` x

2 p1` ∆̃2
0q

2

|∆̃0|

|1` ∆̃0|
, for ε ăă 1. (3.74)

For the narrow resonance, ε “ 555 ąą 1. Hence, Eq. 3.69 gives Z Ñ 1 and

Eq. 3.70 gives

Ẽm Ñ ´
∆̃0

ε
, for |∆̃0| « 1; ∆̃0 ă 0. (3.75)

Substituting Eq. 3.75 in Eq. 3.67, we have for the narrow resonance,

ĨE “ ´
θr´∆̃0s

∆̃0 ´ ε x2
. for ε ąą 1 (3.76)

3.5.2 Dressed continuum state shift IEK

In this section, we will evaluate IEk for the case of broad and narrow resonances.

Writing IEk explicitly from Eq. 3.47,

IEk “
ÿ

k1‰k

|xg1|Ek1y|
2

Ek1 ´ Ek
“ P

ż

d3~k1
V

p2πq3
|xg1|Ek1y|

2

Ek1 ´ Ek
, (3.77)

“ P
ż

dk14πk12
|xg1|Ẽk1y|

2

~2

m
pk12 ´ k2q

, (3.78)

From chapter 2, Eq. 2.143 and Eq. 2.184, we know

CpBq “

ż 8

0

4πk2 dk |xg1|Ẽky|
2
“ ε

2

π

ż 8

0

dxx2

r∆̃0 ´ εx2s2 ` x2r1` ∆̃0 ´ εx2s2
, (3.79)

78



where x “ k|abg|. From Eq. 3.79, we can write

|xg1|Ẽky|
2
“
ε|abg|

3

2π2

1

r∆̃0 ´ εx2s2 ` x2r1` ∆̃0 ´ εx2s2
, (3.80)

Substituting |xg1|Ẽk1y|
2 in Eq. 3.78 and converting the integral in k1 to x1 by substi-

tuting x1 “ k1|abg| and using ε “ Ebg{2µB∆B,

IEk “
2

π

1

2µB ∆B
P

ż 8

0

dx1x12

px12 ´ x2q

1

r∆̃0 ´ ε x12s2 ` x12 r1` ∆̃0 ´ ε x12s2
. (3.81)

As the integral in Eq. 3.81 is even in x1, we rewrite the integral by symmetrizing the

the limits of integration,

IEk “
1

π

1

2µB ∆B
P

ż 8

´8

dx1x12

px12 ´ x2q

1

r∆̃0 ´ ε x12s2 ` x12 r1` ∆̃0 ´ ε x12s2
. (3.82)

We rewrite Eq. 3.82 as,

IEk “
1

2µB ∆B
ĨEk , (3.83)

where ĨEk is given by

ĨEk “
1

π
P

ż

dx1x12

px12 ´ x2q

1

r∆̃0 ´ ε x12s2 ` x12 r1` ∆̃0 ´ ε x12s2
. (3.84)

Then Eq. 3.84 takes the form,

ĨEk “ P
ż

dx1gcpx
1
q fcp∆̃0, ε, x

1
q, (3.85)

where fcp∆̃0, ε, x
1q is given by

fcp∆̃0, ε, x
1
q “

ε

π

x12

r∆̃0 ´ ε x12s2 ` x12 r1` ∆̃0 ´ ε x12s2
, (3.86)
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and gcpx
1q is given by

gcpx
1
q “

1

εpx12 ´ x2q
, (3.87)

We further note from chapter 2 (Eq. 2.184 and Eq. 2.185), that

CpBq “

`8
ż

´8

dx1fcp∆̃0, ε, x
1
q “ 1´ ZpBq. (3.88)

We will now study the behavior of fcp∆̃0, ε, x
1q in Eq. 3.86 and analyze whether

some reasonable approximations can permit us to obtain an analytic form of the

complicated integral ĨEk . We can see that the value of fcp∆̃0, ε, x
1q is maximum

under the conditions,

i) when ∆̃0 ´ ε x
12 “ 0, which can be satisfied only when ∆̃0 ą 0, or

ii) when 1` ∆̃0 ´ ε x
12 “ 0, which can be satisfied only when 1` ∆̃0 ą 0.

For ∆̃0 ą 0, we are on the right of the Feshbach resonance in the BCS regime

and therefore Z Ñ 0 and G Ñ 1. We now evaluate the peak value of the integrand

for the two cases. For ∆̃0 ą 0 and ∆̃0 ´ ε x
12 “ 0,

x12 “
∆̃0

ε
,

fc Ñ
ε

π
. (3.89)

For 1` ∆̃0 ą 0 and 1` ∆̃0 ´ ε x
12 “ 0 ,

x12 “
1` ∆̃0

ε
,

fc Ñ
1` ∆̃0

π
. (3.90)

We now evaluate ĨEk for the case of broad Feshbach resonance and narrow Fesh-

bach resonance separately.
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For broad Feshbach resonance, ε ăă 1. Hence, Eq. 3.90 for the condition 1`∆̃0 ą

0 is the dominant case and Eq. 3.89 can be neglected compared to Eq. 3.90. However,

the integral in Eq. 3.84 cannot be evaluated for the case 1` ∆̃0 ą 0 by substituting

ε “ 0, as fcp∆̃0, ε, x
1q exhibits a sharply peaked delta function-like behavior for εÑ 0

as shown in Fig. 3.4. Hence, we use a trick where we evaluate the total integral ĨEk

for the case 1` ∆̃0 ą 0 by writing ĨEk as

ĨEk “ ĨaEk ` Ĩ
b
Ek
.

Now we use a two-step approach;

i) We evaluate the integral ĨaEk near the place where fcp∆̃0, ε, x
1q is sharply peaked

by removing gcpx
1q outside the integral and evaluating gcpx

1q at x12 “ 1`∆̃0

ε
.

ii) We evaluate the integral ĨbEk at all other places except where fcp∆̃0, ε, x
1q shows

the delta function behavior by subtracting the value of the integral ĨaEk evaluated in

step 1 from the total integral.
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Figure 3.4: Plot of fcp∆̃0, ε, x
1q as a function of x for the case ε ăă 1 when

∆0 “ 2.1. ε is chosen to be ε “ 0.00036 for this plot as in the case of Broad Feshbach
resonance in 6Li.
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Hence, using the above prescription, from step (i) we have, for 1` ∆̃0 ą 0,

ĨaEk “ θp1` ∆̃0q

»

– gcpx
1
q|
x12“

1`∆̃0
ε

`8
ż

´8

dx1fcp∆̃0, ε, x
1
q

fi

fl . (3.91)

The heaviside step function θp1`∆̃0q in Eq. 3.91 imposes the condition that 1`∆̃0 ą

0. Evaluating ĨaEk in equation Eq. 3.91,

ĨaEk “
θp1` ∆̃0q

1` ∆̃0 ´ εx2

`8
ż

´8

dx1fcp∆̃0, ε, x
1
q. (3.92)

From Eq. 3.88, we know

ż 8

´8

dx1fcpx
1
q Ñ 1, since Z Ñ 0 as εÑ 0. (3.93)

Using Eq. 3.93 in Eq. 3.92 and taking the limit εÑ 0 gives

lim
εÑ0

ĨaEk “
θp1` ∆̃0q

1` ∆̃0

. (3.94)

Now using step (ii) outlined above, we get ĨbEk “ ĨEk ´ Ĩ
a
Ek

,

ĨbEk “ P

$

&

%

ż

dx1gcpx
1
qfcp∆̃0, ε, x

1
q ´ gcpx

1
q|
x12“

1`∆̃0
ε

`8
ż

´8

dx1fcp∆̃0, ε, x
1
q

,

.

-

or

ĨbEk “ θp1` ∆̃0q P

ż 8

´8

dx1
„

1

ε px12 ´ x2q
´

1

1` ∆̃0 ´ ε x2



fcpx
1
q. (3.95)

where the second term in the above integral is the part of the sharp spike evaluated

in step 1. Further algebraic reduction of Eq. 3.95 gives,

ĨbEk “
θp1` ∆̃0q

1` ∆̃0 ´ ε x2
P

ż 8

´8

dx1

«

1` ∆̃0 ´ ε x
12

ε px12 ´ x2q

ff

fcpx
1
q. (3.96)
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Now taking the limit εÑ 0 in Eq. 3.96, canceling 1` ∆̃0 and using

fcpεÑ 0, x1q “
ε

π

x12

∆̃2
0 ` p1` ∆̃0q

2 x12
, (3.97)

Eq. 3.96 becomes,

lim
εÑ0

ĨbEk “
θp1` ∆̃0q

π
P

ż 8

´8

dx1

x12 ´ x2

x12

∆̃2
0 ` p1` ∆̃0q

2 x12
. (3.98)

The contour integral method as shown in Appendix B Eq. B.15, yields

lim
εÑ0

ĨbEk “
1

π

π|∆̃0|

|1` ∆̃0|

θp1` ∆̃0q

∆̃2
0 ` p1` ∆̃0q

2 x2
. (3.99)

Using Eq. 3.94 and Eq. 3.99, the expression for the integral ĨEk for broad Feshbach

resonance is given by,

lim
εÑ0

ĨEk “ lim
εÑ0

ĨaEk ` lim
εÑ0

ĨbEk “
θp1` ∆̃0q

1` ∆̃0

`
|∆̃0|

|1` ∆̃0|

θp1` ∆̃0q

∆̃2
0 ` p1` ∆̃0q

2 x2
.(3.100)

For the narrow resonance, ε ąą 1, we can see from Eq. 3.89 and Eq. 3.90, that

the result for ∆̃0 ą 0 is dominant. Although, fcp∆̃0, ε, x
1q does not show a delta

function type of behavior for the case ε ąą 1, it still has a maximum when the

condition ∆̃0 ´ ε x12 “ 0 is satisfied. Hence, we follow the same recipe used in the

case of broad resonance , where we evaluate the integral using a two-step approach.

From step (i) for x12 “ ∆̃0

ε
we have

ĨaEk “ θp∆̃0q

»

– gcpx
1
q|
x12“

∆̃0
ε

`8
ż

´8

dx1fcp∆̃0, ε, x
1
q

fi

fl , (3.101)

ĨaEk “
θp∆̃0q

∆̃0 ´ εx2

`8
ż

´8

dx1fcp∆̃0, ε, x
1
q. (3.102)
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We recall from Eq. 3.88,

`8
ż

´8

dx1fcp∆̃0, ε, x
1
q “ 1´ Z. (3.103)

Substituting Eq. 3.103 in Eq. 3.102, we get

lim
εąą1

ĨaEk “
1

∆̃0 ´ ε x2
r1´ Zs. (3.104)

However, Z “ 0, for ∆̃0 ą 0. Hence,

lim
εąą1

ĨaEk “
θp∆̃0q

∆̃0 ´ ε x2
. (3.105)

Now from step (ii), we have

ĨbEk “ ĨEk ´ Ĩ
a
Ek
,

“ P

»

–

ż

gcpx
1
q fcp∆̃0, ε, x

1
q dx1 ´ gcpx

1
q|
x12“

∆̃0
ε

`8
ż

´8

dx1fcp∆̃0, ε, x
1
q

fi

fl .(3.106)

Using Eq. 3.101 and Eq. 3.102 in Eq. 3.106, gives

ĨbEk “ θp∆̃0q P
ż 8

´8

dx1
„

1

ε px12 ´ x2q
´

1

∆̃0 ´ ε x2



fcp∆̃0, ε, x
1
q, (3.107)

where the second term in the above integral is the part of the sharp spike evaluated

in step 1. Further reduction of Eq. 3.107 gives,

ĨbEk “
θp∆̃0q

∆̃0 ´ ε x2
P

ż 8

´8

dx1

«

∆̃0 ´ ε x
12

ε px12 ´ x2q

ff

fcp∆̃0, ε, x
1
q. (3.108)

From Eq. 3.86, we have

fcp∆̃0, ε, x
1
q “

1

ε2
ε

π

x12

p ∆̃0

ε
´ x12q2 ` p1`∆̃0

ε
´ x12q2 x12

. (3.109)
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Substituting Eq. 3.109 in Eq. 3.108,

ĨbEk “
θp∆̃0q

ε2 πp ∆̃0

ε
´ x2q

P
ż 8

´8

dx1
x12

x12 ´ x2

p ∆̃0

ε
´ x12q

p ∆̃0

ε
´ x12q2 ` p1`∆̃0

ε
´ x12q2 x12

. (3.110)

To check whether the integral converges for ε ąą 1, we approximate ∆̃0{ε Ñ 0

and 1` ∆̃0{εÑ 0. Then Eq. 3.110 takes the form

ĨbEk “
θp∆̃0q

ε2 πx2
P

ż 8

´8

dx1
x12

x12 ´ x2

x12

p1` x12qx14
. (3.111)

We cancel the terms in the numerator and denominator,

ĨbEk “
θp∆̃0q

ε2 πx2
P

ż 8

´8

dx1
1

px12 ´ x2qp1` x12q
(3.112)

From Eq. 3.112, we can see that ĨbEk becomes negligible when ε ąą 1 (narrow

resonance), since the integral is finite and there is a factor of 1{ε2 outside the integral.

Hence, for narrow resonance ĨEk “ ĨaEk . Therefore,

lim
εąą1

ĨEk “
θp∆̃0q

∆̃0 ´ ε x2
. (3.113)

Summarizing the results for the shift integrals ĨEk and ĨE for both the broad and

the narrow Feshbach resonance,

ĨEk “
θp1` ∆̃0q

1` ∆̃0

`
|∆̃0|

|1` ∆̃0|

θp1` ∆̃0q

∆̃2
0 ` p1` ∆̃0q

2 x2
, for ε ăă 1 (broad resonance)

“
θp∆̃0q

∆̃0 ´ ε x2
, for ε ąą 1 (narrow resonance)(3.114)
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ĨE “
2 θp´∆̃0q θp1` ∆̃0q

∆̃2
0 ` x

2 p1` ∆̃0q
2

|∆̃0|

|1` ∆̃0|
, for ε ăă 1 (broad resonance)

“
θp´∆̃0q

∆̃0 ´ ε x2
, for ε ąą 1 (narrow resonance)(3.115)

Hence, for the broad Feshbach resonance, for 1 ` ∆̃0 ą 0, using Eq. 3.114 and

Eq. 3.115,

SBp∆̃0, xq ” ĨEk ´ ĨE “
∆̃0 ` p1` ∆̃0qx

2

∆̃2
0 ` p1` ∆̃0q

2x2
. (3.116)

For the narrow Feshbach resonance, using Eq. 3.114 and Eq. 3.115, and θp∆̃0q `

θp´∆̃0q “ 1, gives

SNp∆̃0, xq ” ĨEk ´ ĨE “
1

∆̃0 ´ εx2
. (3.117)

Before we proceed further, it is important to show that the assumptions that

were made in solving IE and IEk are valid. Fig. 3.5 shows the comparison between

the analytical results for the total shift (Eq. 3.116 and Eq. 3.117) obtained in this

section and the exact results evaluated numerically for the total shift using Eq. 3.84

and Eq. 3.67 for the broad and the narrow Feshbach resonances. From Fig. 3.5, it is

clear that the analytical results agrees closely with the exact values for both below

and above the Feshbach resonance. Also note that for the broad resonance, Fig. 3.5

(top) the analytical and numerical results match even for 1 ` ∆̃0 ă 0, although we

arrived at an analytical solution by assuming 1` ∆̃0 ą 0.

Using Eq. 3.67 and Eq. 3.83 in Eq. 3.61, we have

D1pE,Ekq

~
“ ∆epxq `

Ω2
2

4 δpxq
`

Ω2
1

4

~
2µB ∆B

pĨEk ´ ĨEq, (3.118)
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Figure 3.5: Comparison between exact shift (blue dots) evaluated numerically
from Eq. 3.84 and Eq. 3.67 and analytic shift (red line) evaluated from Eq. 3.116
and Eq. 3.117 for (top) x = 0.1 in the case of broad Feshbach resonance (ε “ 0.000361)
and (bottom) x = 0.05 in the case of narrow Feshbach resonance (ε “ 555). The
analytic shift matches the exact shift for both ∆0 ă 0 (below resonance) and ∆0 ą 0
(above resonance).

Now we define S ” ĨEk ´ ĨE, and rewrite Eq. 3.118 as

D1pE,Ekq

~
“ ∆epxq `

Ω2
2

4 δpxq
`

Ω2
1

4

~
2µB ∆B

Sp∆̃0, xq, (3.119)

where Sp∆̃0, xq is SBp∆̃0, xq for the broad resonance (Eq. 3.116) and SNp∆̃0, xq for the

narrow resonance (Eq. 3.117), respectively. In Eq. 3.119, the momentum dependence

x “ k|abg| of the detunings is shown explicitly. Substituting Eq. 3.119 in Eq. 3.44,
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we arrive at the final expression for the energy shift function

DpE,Ekq

~
“ ´∆epxq ´

Ω2
2

4 δpxq
´

Ω2
1

4

~
2µB ∆B

Sp∆̃0, xq ´ i
γe
2

(3.120)

3.6 Evaluation of the optically induced phase shift φ

We recall from Eq. 3.43 that the expression for the wave function of the dressed

triplet continuum scattering state is

ΨEkpr Ñ 8q “
bpkq

kr
?
V

«

sinpkr `∆pkqq `
Ω2

1

4

2π2mk|xg1|Ẽky|
2

DpE,Ekq
cospkr `∆pkqq

ff

.

(3.121)

To maintain box-normalization of the input state, the output triplet scattering state

Eq. 3.43 must take the form

ΨEkpr Ñ 8q “
1
?
V

rsinpkr `∆pkq ` φpkqs

kr
, (3.122)

where ∆pkq is phase shift induced by the magnetic Feshbach resonance, φpkq is the

light-induced phase shift, and the total phase shift δpkq ” ∆pkq ` φpkq.

Expanding Eq. 3.122,

ΨEkpr Ñ 8q “
1

?
V kr

rsinpkr `∆pkqq cospφpkqq ` cospkr `∆pkqq sinpφpkqqs

(3.123)

Comparing Eq. 3.123 with Eq. 3.121,

bpkq “ cosrφpkqs, (3.124)

bpkq
Ω2

1

4

2π2mk|xg1|Ẽky|
2

DpE,Ekq
“ sinrφpkqs. (3.125)
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Dividing Eq. 3.124 by Eq. 3.125,

k cotrφpkqs “
DpE,Ekq

Ω2
1

4
2π2m|xg1|Ẽky|2

(3.126)

Using x “ k|abg| in the above equation, we have

x cotrφpkqs “
DpE,Ekq|abg|

Ω2
1

4
2π2m|xg1|Ẽky|2

(3.127)

From Eq. 3.80,

|xg1|Ẽky|
2
“

ε|abg|
3

2π2

1

r∆̃0 ´ ε x2s2 ` x2 r1` ∆̃0 ´ ε x2s2
, (3.128)

“
ε|abg|

3

2π2
Lp∆̃0, xq,

where Lp∆̃0, xq

Lp∆̃0, xq “
1

r∆̃0 ´ ε x2s2 ` x2 r1` ∆̃0 ´ ε x2s2
. (3.129)

In Eq. 3.129, we recall from Eq. 3.65

∆̃0 “
B ´B8

∆B
,

ε “
Ebg

2µB∆B
,

Ebg “
~2

ma2
bg

. (3.130)

From the result derived in the previous sections for the energy denominator D1pE,Ekq

in Eq. 3.120, we know

DpE,Ekq

~
“ ´∆epxq ´

Ω2
2

4 δpxq
´

Ω2
1

4

~
2µB ∆B

Sp∆̃0, xq ´ i
γe
2
. (3.131)
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Substituting Eq. 3.131 and Eq. 3.129 in Eq. 3.127, the optically induced phase shift

φpxq is determined by

x cotrφpxqs “ ´
∆̃epxq `

Ω̃2
2

4 δ̃pxq
`

Ω̃2
1

4
~γe

2µB ∆B
Sp∆̃0, xq `

i
2

Ω̃2
1

4
~γe

2µB∆B
Lp∆̃0, xq

, (3.132)

where the dimensionless frequencies are

δ̃pxq “
δpxq

γe
; ∆̃epxq “

∆epxq

γe
; Ω̃2 “

Ω2

γe
; Ω̃1 “

Ω1

γe
.

We recall from Eq. 3.51 and Eq. 3.55 that the single photon detuning ∆epxq and

two-photon detuning δpxq are defined in terms of x as

∆epxq “ ∆L ´
2µBpB ´Bref q

~
`

~x2

m|abg|2
(3.133)

δepxq “ ∆2 ´∆L `
2µBpB ´Bref q

~
´

~x2

m|abg|2
, (3.134)

where ∆L (Eq. 3.52) is the laser detuning for the |T, ky ´ |ey transition defined at a

reference magnetic field Bref and ∆2 (Eq. 3.56) is the laser detuning for the |g2y´|ey

transition.

Eq. 3.132 gives the optically induced light shift in terms of measurable parame-

ters and is the most important result of the continuum-dressed state model. Using

Eq. 3.132, we can find the optically induced two-body loss rate, the zero-energy

scattering length, and the effective range.

3.7 Evaluation of the total phase shift δ

Our objective is to evaluate the total phase shift δ, which is given by the sum of

the light induced phase shift φ, and the Feshbach resonance phase shift ∆ with no

optical fields. Hence,
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δpkq ” ∆pkq ` φpkq (3.135)

From Eq. 3.135, we have

k cot δ “
k cot ∆ k cotφ´ k2

k cot ∆` k cotφ
(3.136)

Using x “ k|abg| in the above equation,

x cot δ “
x cot ∆x cotφ´ x2

x cot ∆` x cotφ
, (3.137)

where the phase shift ∆ induced by the magnetic Feshbach resonance is given in

Appendix A, Eq. A.25 as

x cot ∆ “
∆̃0 ´ εx

2

1` ∆̃0 ´ εx2
, (3.138)

and phase shift φ is derived in the previous section in Eq. 3.132.

In this chapter, the continuum-dressed model was used to derive the expression

for the optically induced phase shift φ by replacing the bare state basis with the

continuum-dressed state basis. In the next chapter, we will use the optically induced

hase shift to predict the two-body scattering parameters, including the two-body loss

rate constant K2, the zero-energy scattering length a, and the effective range reff .
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4

Continuum-Dressed Model Predictions

In this chapter, I derive expressions for the two-body scattering parameters including

the two-body loss rate K2, the zero energy scattering length a, and the effective

range re, from the expression of optically induced phase shift derived in the previous

chapter. In addition, we will use the continuum-dressed model to make predictions

for K2 and a near the broad and the narrow Feshbach resonances in 6Li to elucidate

the versatility of using our two-field method to control interactions near magnetic

Feshbach resonances.

4.1 Two-body loss rate constant K2

For two-body scattering, the optically induced loss between particles with density na

and nb is described by the two-body loss rate constant K2,

9na “ ´pK2nbqna (4.1)

The two-body loss rate K2 in the above equation can be written as

K2pkq “ vrel σinelastic “
~k
µ
σinelastic, (4.2)
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where vrel is the relative velocity between the two particles, µ is the reduced mass,

and σinelastic is the inelastic cross section. Now we proceed to evaluate K2 by finding

the inelastic cross section.

The relative momentum-dependent two-body scattering amplitude is given by

fpkq “
1

2ik
pe2iδ

´ 1q “
1

k cot δpkq ´ ik
. (4.3)

Let

k cot δpkq ” q1pkq ` iq2pkq. (4.4)

Substituting Eq. 4.4 in Eq. 4.3,

fpkq “
1

q1pkq ´ irk ´ q2pkqs
. (4.5)

From the definition of elastic cross section σel, we know

σelastic “ 4π|fpkq|2 “ 4π
1

rq1pkqs2 ` rk ´ qpkqs2
. (4.6)

The total cross section σtot is given by the optical theorem

σtotal “
4π

k
Impfpkqq “

4π

k

pk ´ q2pkqq

rq1pkqs2 ` rk ´ q2pkqs2
. (4.7)

Using Eq. 4.6 and Eq. 4.7, we write the inelastic cross section σinelastic “ σtotal´σelastic

σinelastic “
4π

k
Impfpkqq ´ 4π|fpkq|2 “

´4π

k

q2pkq

rq1pkqs2 ` rx´ q2pkqs2
. (4.8)

Substituting Eq. 4.8 in Eq. 4.2 with µ “ m{2, yields

K2pkq “
´8π~
m

q2pkq

rq1pkqs2 ` rk ´ q2pkqs2
. (4.9)
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Since we derived the expression for the optically induced phase shift φ as a func-

tion of x “ k|abg|, it is useful to write K2 in terms of x rather than k. Therefore we

let

q̃pxq ” qpkq |abg|

x cot δpkq ” q̃1pkq ` iq̃2pkq. (4.10)

From Eq. 4.9 and Eq. 4.10, we have

K2pxq “
´8π~
m

|abg|
q̃2pxq

rq̃1pxqs2 ` rx´ q̃2pxqs2
. (4.11)

The above expression for K2 assumes that the scattering atoms have a well defined

incoming relative momentum k. However, for a thermal cloud of atoms, that is not

the case. Hence we need to determine the expression for a momentum averaged K2.

For simplicity, we assume a classical Boltzmann distribution of relative momentum,

which is applicable for the experimental temperatures reported in this thesis. For a

classical Boltzmann distribution of relative momentum k we have,

xK2pkqy “

ż 8

0

4πk2dk

pk0

?
πq3

e
´ k2

k2
0 K2pxq (4.12)

We know p~k0q
2 “ 2µkBT “ mkBT , so that

~k0 ”
a

mkB T

x “ k|abg|

x0 “ k0|abg| (4.13)

Using Eq. 4.13 in Eq. 4.12, we get

xK2pkqy “

ż 8

0

4πx2dx

px0

?
πq3

e
´x2

x2
0 K2pxq. (4.14)
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We substitute x “ ux0, to arrive at the final expression for the momentum

averaged K2,

xK2pkqy “
4
?
π

ż 8

0

du u2 e´u
2

K2pux0q. (4.15)

From Eq. 4.11, natural unit of K2 is h|abg|{m and is given in cm3/s.

4.2 Procedure for calculating K2

Before I try to plot K2 for different cases, I will save the reader the trouble of looking

at several equations buried in multiple chapters in this thesis. Here, I will summarize

the necessary equations and provide a seven step approach for calculating K2.

Step 1: Assigning input values. The input parameters can be differentiated into

constants that depend on the particular atom under investigation and experimental

parameters. The constants are the mass of the atom m, Bohr magneton µB, refer-

ence magnetic field Bref , resonance magnetic field Bres, width of the resonance ∆B,

background scattering length abg, and the linewidth of the optical transition γe.

The experimental parameters are temperature T , Rabi frequency Ω1 for the con-

trol laser, Rabi frequency Ω2 for the EIT laser and the optical detunings. These

include the laser detuning ∆L for the |T, ky ´ |ey transition, the laser detuning ∆1

for the |g1y ´ |ey transition, and the laser detuning ∆2 for the |g2y ´ |ey transition.

For the broad Feshbach resonance in 6Li, we choose Bref “ Bres “ 832.2 G and

abg “ ´1405 a0 and for the narrow Feshbach resonance in 6Li, we choose Bref “

Bres “ 543.2 G and abg “ 62 a0. The optical transition linewidth γe for the singlet

molecular transition in 6Li is 2π ˆ 11.8 MHz.

Step 2: From the input parameters in Step 1, we calculate the following quan-

tities,

k0 “

?
mkBT

~
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x “ k0 |abg|

∆̃0 “
B ´Bres

∆B

Ẽbg “
~2

ma2
bg

ε “
Ẽbg

2µB∆B

∆e “ ∆L ´ 2µBpB ´Bref q `
~2 x2

m|abg|2

δ “ ∆2 ´∆L ` 2µBpB ´Bref q ´
~2 x2

m|abg|2

Step 3: From the quantities evaluated in Step (2), we calculate Lp∆̃0, xq and the

shift integrals SBp∆̃0, xq and SNp∆̃0, xq.

Lp∆̃0, xq “
1

r∆̃0 ´ ε x2s2 ` x2 r1` ∆̃0 ´ ε x2s2

For broad Feshbach resonance,

SBp∆̃0, xq “
∆̃0 ` p1` ∆̃0qx

2

∆̃2
0 ` p1` ∆̃0q

2x2

For narrow Feshbach resonance,

SNp∆̃0, xq “
1

∆̃0 ´ εx2

Step 4: From the shift integrals evaluated in Step (3), we calculate the phase

shift due to the magnetic Feshbach resonance ∆, phase shift due to the optical fields
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φ, and the total phase shift δ.

x cot ∆ “
∆̃0 ´ εx

2

1` ∆̃0 ´ εx2

x cotφ “ ´

∆̃epxq `
Ω̃2

2

4 ˜δpxq
`

Ω̃2
1

4
~γe

2µB ∆B
Sp∆̃0, xq `

i
2

Ω̃2
1

4
~γe

2µB∆B
Lp∆̃0, xq

x cot δ “
x cot ∆x cotφ´ x2

x cot ∆` x cotφ

Step 5: From Step (4), We calculate the real part q̃pxq1 and imaginary part q̃pxq2

of the total phase shift δ.

q̃1pxq “ Re rx cot δs

q̃2pxq “ Imrx cot δs

Step 6: From q̃pxq1 and q̃pxq2 evaluated in Step (5), we calculate the momentum

dependent K2pxq using the expression,

K2pxq “
´8π~
m

|abg|
q̃pxq2

rq̃1pxqs2 ` rx´ q̃2pxqs2
,

Step 7: Finally, we substitute x “ ux0 and evaluate the momentum averaged

xK2pkqy from K2pxq evaluated in Step (6) using the expression,

xK2puqy “
4
?
π

ż 8

0

du u2 e´u
2

K2pux0q. (4.16)

4.3 Two-body loss rate K2 near broad Feshbach resonance

In this section, we will study the two-body loss rate K2 near the broad Feshbach

resonance. K2 is a measure of atom loss due to spontaneous scattering and has the

units of cm3/s. The typical densities of our atom cloud is n̄ « 1012{cm3. For a
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K2 « 10´11 cm3/s, the lifetime of the atoms is 100 ms. With our two-field method,

we can reach K2 « 10´11 cm3/s as illustrated in the plots below.

The relevant energy states and the detunings required to explain the predictions

of the continuum-dressed state model are summarized in Table. 4.1 and Table. 4.2,

respectively.

Table 4.1: Energy states for closed channel EIT

States Definition

|T, ky Triplet continuum scattering state with momentum k.

|gb1y Broad singlet ground vibrational state with a hyperfine coupling of
VHF “ hˆ 131.6 MHz with |T, ky resulting in the broad Feshbach
resonance at 832.2 G.

|gn1 y Narrow singlet ground vibrational state with a hyperfine coupling of
VHF “ hˆ 5.9 MHz with |T, ky resulting in the narrow
Feshbach resonance at 543.2 G.

|g2y Singlet ground vibrational state that is lower in energy than |g1y.

|ey Singlet excited vibrational state.

We start with a simple plot of K2 vs the single-photon detuning ∆e near the

broad Feshbach resonance at a fixed B-field of 825 G. Fig. 4.1 shows a comparison

of the two field loss spectra (red curve) and the single field loss spectra (blue curve)

for Ω1 “ 1 γe, and Ω2 “ 1 γe, where γe “ 2π ˆ 11.8 MHz is the molecular transition

linewidth.

Since we are studying the behavior near the broad Feshbach resonance, we take

Bref “ Bres “ 832.2 G. Therefore, the detuning for the |T, ky Ñ |ey transition ∆L “ 0

at B “ 832.2 G. Note that the single photon detuning ∆e “ ∆L´2µBpB´Bref q can

be changed either by changing the magnetic field B or the control laser frequency ω1.

For the plots shown here for broad Feshbach resonance, we change the control laser

frequency ω1 and hold the magnetic field B constant. We choose the EIT (ω2) beam
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to be resonant for the |g2y Ñ |ey transition i.e., the detuning ∆2 “ 0. The condition

for EIT loss suppression is satisfied when two-photon detuning δe “ ∆2 ´∆e “ 0.

Table 4.2: Zero energy detunings for closed channel EIT

Detuning Definition

∆1 Detuning for the |g1y ´ |ey transition

∆2 Detuning for the |g2y ´ |ey transition

∆L Detuning for the |T y ´ |ey transition defined at a
reference magnetic field Bref .

∆e Single photon detuning, ∆e “ ∆L ´ 2µBpB ´Bref q

δe Two photon detuning, δe “ ∆2 ´∆e
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Figure 4.1: Two-body loss rate K2 near the broad Feshbach resonance at B “ 825
G as a function of single-photon detuning ∆e by changing the frequency ω1 of the
control laser as predicted by the continuum-dressed state model. The single-field loss
(blue) peaks when ∆e “ 0 and two-field loss suppressed (red) when the two-photon
detuning δe “ ∆2 ´ ∆e “ 0. T “ 10µK, Ω1 “ 1 γe, and Ω2 “ 1 γe, where the
molecular transition linewidth γe “ 2π ˆ 11.8 MHz.

We use T “ 10µK for all the plots so that we are not in the degenerate regime

and the relative momentum k of the atoms follows a classical Boltzmann distribution.

The control beam creates atom loss (Fig. 4.1 red) by pumping the free atoms

in the triplet continuum |T, ky, which is mixed with the broad singlet ground state

99



|gb1y (Table. 4.1), to the singlet excited state |ey. For ∆e “ 0, the control beam is

resonant for the |T, ky´ |ey transition and creates peak atom loss. The control beam

does not cause an appreciable light shift of the state |gb1y near the broad resonance,

since the hyperfine coupling VHF between |gb1y and |T, ky is much stronger than Ω1.

The EIT beam suppresses atom loss due to destructive quantum interference be-

tween the two paths, |T, ky´ |ey and |g2y´ |ey´ |T, ky. This phenomenon of creating

a transmission window in an absorption peak is called “electromagnetically induced

transparency” (EIT) [55]. Loss suppression is maximum when the two-photon de-

tuning δe “ ∆2 ´∆e “ 0. Since we chose ∆2 “ 0, maximum loss suppression occurs

at ∆e “ 0.

4.3.1 Two-body loss rate K2 for different Rabi frequencies Ω2
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Figure 4.2: Two-body loss rateK2 vs single photon detuning ∆e for fixed Ω1 “ 1 γe
and Ω2 “ 1 γe (blue), Ω2 “ 2 γe (red), and Ω2 “ 3 γe (orange). B “ 825 G;
T “ 10µK. As Ω2 increases for fixed Ω1, the width of the EIT window increases.

Fig. 4.2 shows the effect of changing the Rabi frequency of the EIT beam Ω2 on

loss suppression for three different cases, namely, Ω2 “ 1 γe, Ω2 “ 2 γe, and Ω2 “ 3 γe.

We take Ω1 “ 1 γe for all three cases. As expected, increasing the Rabi frequency of

the Ω2 beam, increases the width of suppression window and decreases the absolute

value of K2 at two-photon detuning δe “ 0.
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Figure 4.3: Two-body loss rateK2 vs single photon detuning ∆e for fixed Ω2 “ 1 γe
and Ω1 “ 0.5 γe (red), Ω1 “ 1 γe (blue), Ω1 “ 2 γe (orange), and Ω1 “ 3 γe (green).
B “ 825 G; T “ 10µK. As Ω1 increases for fixed Ω2, the width of the EIT window
decreases.

4.3.2 Two-body loss rate K2 vs Rabi frequency Ω1

The effect of changing the Rabi frequency of control laser Ω1 on loss suppression

is shown in Fig. 4.3 for four cases, namely, Ω1 “ 0.5 γe, Ω1 “ 1 γe, Ω1 “ 2 γe, and

Ω1 “ 3 γe. We take Ω2 “ 1 γe for all four cases. We can clearly see that increasing

Ω1 increases the absolute value of K2 and decreases the width of the transparency

window.

4.3.3 Two-body loss rate K2 vs ratio of Rabi frequencies Ω1{Ω2

Fig. 4.2 and Fig. 4.3 indicate that the width of the suppression window can be

increased by either increasing Ω2 or decreasing Ω1. However, it is important not

to misperceive that the ratio of Ω2 and Ω1 determines the width of the suppression

window. This is illustrated in Fig. 4.4 where three different cases, namely, Ω1 “

Ω2 “ 1 γe, Ω1 “ Ω2 “ 2 γe, and Ω1 “ Ω2 “ 3 γe are plotted. We can clearly see that,

although the ratio of Ω2 and Ω1 is held constant at 1, as Ω2 increases, the width of the

suppression window increases, indicating that Ω2 dominates over Ω1 in determining

the width of the EIT window. Hence, in pursuing spectroscopic experiments, when
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we are trying to find the loss suppression for the very first time, it is always better

to use the maximum intensity available in the EIT beam, thereby maximizing Ω2.
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Figure 4.4: Two-body loss rate K2 vs single photon detuning ∆e for Ω1

Ω2
“ 1

and Ω1 “ Ω2 “ 0.5 γe (red), Ω1 “ Ω2 “ 1 γe (blue), Ω1 “ Ω2 “ 2 γe (orange), and
Ω1 “ Ω2 “ 3 γe (Brown). B “ 825 and T “ 10µK. Although the ratio Ω1

Ω2
is held

constant at 1, higher Ω2 increases the width of the EIT window.

4.3.4 Two-body loss rate K2 vs detuning ∆2
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Figure 4.5: Two-body loss rate K2 vs single photon detuning ∆e at B = 825 G for
|∆2| ă 2 γe. For ∆2 “ `15 MHz, loss suppression occurs at δe “ ∆2 ´∆e “ 0, i.e.,
∆e “ 15 MHz (red) and for ∆2 “ ´15 MHz, loss suppression occurs at ∆e “ ´15
MHz (blue). T “ 10µK, Ω1 “ 1 γe, and Ω2 “ 1 γe.
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Figure 4.6: Two-photon Raman absorption as evidenced by the appearance of
two narrow absorption peaks when |∆2| ą 2 γe. Two-body loss rate K2 vs single
photon detuning ∆e at B = 825 G for ∆2 ą 2 γe. EIT beam no longer suppresses
loss in the absorption spectrum but instead causes additional loss due to two-photon
Raman absorption. For ∆2 “ 60 MHz, the two-photon absorption peak can be seen
for ∆e “ 60 MHz (blue), and for ∆2 “ ´60 MHz, the two-photon absorption peak
can be seen for ∆e “ ´60 MHz (red). T “ 10µK, Ω1 “ 1 γe, and Ω2 “ 1 γe.

The effect of the detuning of EIT beam ∆2 on the suppression window is shown

in Fig. 4.5. For |∆2| ă 2 γe, we observe an asymmetric suppression window with

respect to the center of the absorption spectra due to EIT. For ∆2 “ `15 MHz, loss

suppression occurs at δe “ ∆2 ´∆e “ 0, i.e., ∆e “ 15 MHz (red) and for ∆2 “ ´15

MHz, loss suppression occurs at ∆e “ ´15 MHz (blue).

For ∆2 ą 2 γe (Fig. 4.6), there is no loss suppression in the original absorption

spectra due to the EIT beam, Instead the EIT beam produces additional loss at δe “

0 through a process called two-photon Raman absorption. For ∆2 “ 60 MHz, the

two-photon absorption peak can be seen for ∆e “ 60 MHz (blue), and for ∆2 “ ´60

MHz, the two-photon absorption peak can be seen for ∆e “ ´60 MHz (red).
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Figure 4.7: Shifting the narrow Feshbach resonance using a single optical field.
(left) Two-body loss rate constant K2 as a function of magnetic field near the narrow
Feshbach resonance at 543.2 G and (right) corresponding level structure. The control
laser Ω1 is detuned from the |g1y ´ |ey transition by ∆L “ 31.6 MHz. Therefore it
light shifts the narrow Feshbach resonance state |g1y at 543.2 G (vertical dashed
line) to the left to a new magnetic field B1res “ 541.9 G. Atom loss occurs when
|T y is magnetically tuned to be resonant with the shifted narrow singlet state |g̃n1 y
giving rise to the narrow peak. The broad peak arises as a result of optical pumping
from |T y due to its overlap with broad singlet state |gb1y. Ω1 “ 2γe, Ω2 “ 0, and
T “ 10µK.

4.4 Two-body loss rate K2 near narrow Feshbach resonance

When working near the narrow Feshbach resonance, we take Bref “ Bres “ 543.2 G.

Therefore, the detuning for the |T, ky Ñ |ey transition is ∆L “ 0 at Bref “ 543.2 G.

The detuning for the |g1y ´ |ey transition is ∆1 “ ∆L.

We begin our discussion with a simple plot of K2 as a function of magnetic field

when a single optical field, the control field (ω1), illuminates the atoms. Fig. 4.7 (left)

shows loss spectra near the narrow Feshbach resonance as a function of magnetic field,

when the control beam (ω1) of Rabi frequency Ω1 “ 2γe and detuning ∆L “ 31.6

MHz iluminates the atoms. Fig. 4.7 (right) show the corresponing level scheme. The

loss spectra shows two absorption peaks, a broad loss peak at 554 G and a narrow
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loss peak at 541.9 G. The dotted line shows the position of the unshifted resonance

at 543.2 G.

Near the narrow Feshbach resonance, the hyperfine coupling between the triplet

continuum |T, ky and the narrow singlet ground state |gn1 y (Table. 4.1), is comparable

to the Rabi frequency Ω1. The control beam strongly mixes the singlet ground

state |gn1 y with the singlet excited state |ey, resulting in an energy shifted narrow

singlet state |g̃n1 y (Fig. 4.7 right). This causes a corresponding shift of the narrow

magnetic Feshbach resonance position at Bres “ 543.2 G (vertical dashed line) to

a new magnetic field B1res “ 541.9 G(narrow peak). The shift of the Feshbach

resonance in units of frequency is given by Σopt “ 2µB p543.2´B1resq{~ “ 3.64 MHz.

A red-detuned control beam shifts the resonance to a lower magnetic field and a

blue-detuned control beam shifts the resonance to a higher magnetic field.

The control beam creates atom loss by pumping atoms from the triplet continuum

|T, ky to the excited singlet state |ey. However, near the narrow Feshbach resonance,

|T, ky mixes with both the broad singlet state |gb1y and the light shifted narrow singlet

state |g̃n1 y resulting in two absorption peaks, a broad and a narrow peak.

The control beam is resonant with the |T, ky Ñ |ey transition when the single-

photon detuning ∆e “ ∆L ´ 2µBpB ´ Bref q “ 0. Therefore, maximum loss occurs

at B “ Bref ` ~∆L{2µB “ 554 G, resulting in the broad loss peak.

As the triplet continuum is tuned by changing the magnetic field to resonance

with the shifted narrow singlet state |g̃n1 y, the coupling strength xT, k|g̃n1 y maximizes

resulting in the narrow loss peak.

4.4.1 Shift of the narrow Feshbach resonance vs Rabi frequency Ω1

Fig. 4.8 shows K2 as a function of B-field for three different values of the control

beam Rabi frequency Ω1 of the control beam, namely Ω1 “ 1 γe, 2 γe, and 3 γe . As

Ω1 increases, the mixing between |gn1 y and |ey increases, resulting in larger shift of
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Figure 4.8: Shifting the narrow Feshbach resonance at 543.2 G (vertical dashed
line) for Ω1 “ 1 γe (red), Ω2 “ 2 γe (blue), and Ω2 “ 3 γe (green). The control laser
Ω1 is detuned from the |g1y ´ |ey transition by ∆L “ 31.6 MHz. As Ω1 increases,
the coupling between |gn1 y and |ey increases, resulting in more shift and reduced K2

for the narrow peak. For the broad peak, increasing Ω1, increases the transition rate
resulting in higher K2. Ω2 “ 0 and T “ 10µK.

the resonance and reduced coupling strength between |g̃n1 y and |T y. This is clearly

illustrated in Fig. 4.8, where as Ω1 is increased, it increases the shift of the narrow

peak and diminishes the amplitude of K2. For the broad loss peak, increase in Ω1

increases the rate of transition thereby increasing the amplitude of K2.

4.4.2 EIT loss suppression near narrow Feshbach resonance

Similar to loss suppression near the broad resonance using the EIT beam, loss sup-

pression near the narrow resonance can be achieved by choosing the correct frequency

for the EIT laser. The detuning ∆2 for the |g2y ´ |ey transition can be chosen to

suppress loss either at the broad peak or the narrow peak.

Fig. 4.9 shows loss suppression at the broad peak due to the EIT beam for

Ω1 “ 1 γe and Ω2 “ 1 γe. In this case, the EIT beam is on resonance (∆2 “ 0).

Loss suppression occurs when the two-photon detuning δe “ ∆2 ´ ∆e “ 0. Since

∆2 “ 0, maximum loss suppression occurs at ∆e “ ∆L ´ 2µBpB ´ Bref q “ 0 i.e., at

a magnetic field B “ Bref ` ~∆L{2µB “ 554 G.

106



535 540 545 550 555 560 565 570

0

1

2

3

4

5

6

B (G)

K
2
[1
0-
10
cm

3
/s
]

e 〉

g1
n〉

g2 〉

T,k 〉

ω1ω2

Figure 4.9: (left) EIT loss suppression at the broad peak (red) near the narrow
Feshbach resonance and (right) corresponding level structure. Vertical dashed line
represents unshifted narrow Feshbach resonance at 543.2 G. Single field loss is shown
in blue. The frequency ω2 of the EIT laser is chosen to suppress loss at the broad
peak. The control laser Ω1 is detuned from the |g1y ´ |ey transition by ∆L “ 31.6
MHz. The EIT laser is on resonance with the |g2y ´ |ey transition i.e., ∆2 “ 0.
Ω1 “ 2 γe, Ω2 “ 1 γe, and T “ 10µK.

Fig. 4.10 shows loss suppression at the narrow peak due to the EIT beam for

Ω1 “ 1 γe and Ω2 “ 1 γe. Loss suppression at the shifted narrow peak occurs when

the detuning of the EIT beam ∆2 “ ∆L ` Σopt (Fig. 4.10 right), where Σopt “

2µB p543.2 ´ B1resq. In this case, maximum loss suppression occurs when the two-

photon detuning δe “ ∆2 ´ ∆e “ 0. Since ∆2 “ ∆e “ ∆L ` Σopt, maximum loss

suppression occurs when the magnetic field B “ Bres ´ ~Σopt{2µB “ 541.9 G.

However, closer examination of the loss suppression spectrum indicates that in

addition to suppressing loss through EIT at the narrow loss peak, there is addi-

tion loss due to two-photon Raman absorption (Fig. 4.6 explained in section 4.3.4)

from the broad Feshbach resonance. The Raman absorption peak is clearly seen in

Fig. 4.11 (top-red) where the plot is expanded around the suppression region.

Instead of a simple loss suppression spectrum with an absorption minimum at

the point of maximum loss, there is an additional peak (center peak in Fig. 4.11
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Figure 4.10: (Left) EIT loss suppression at the narrow peak near the narrow
Feshbach resonance and (Right) corresponding level structure. Vertical dashed line
represents unshifted narrow Feshbach resonance at 543.2 G. Single field loss is shown
in blue. The control laser Ω1 is detuned from the |g1y ´ |ey transition by ∆L “ 31.6
MHz. The frequency ω2 of the EIT laser is chosen such that the detuning for the
|g2y ´ |ey transition ∆2 “ ∆L ` Σopt to suppress loss at the narrow peak, where
Σopt “ 2µB p543.2´B1resq{~. Ω1 “ 1 γe, Ω2 “ 1 γe, and T “ 10µK.

(top) ) in the spectrum. To further understand this phenomenon, the individual

contributions from EIT and Raman absorption were studied. Fig. 4.11 (bottom)

shows the contribution of EIT loss suppression (Fig. 4.11 orange) from the narrow

Feshbach resonance states and the Raman coupled loss enhancement from the broad

Feshbach resonance states (Fig. 4.11 black) separately. From Fig. 4.11, it is clear that

the resultant spectrum shown in red (Fig. 4.11 top) is a sum of the EIT spectrum

shown in orange (Fig. 4.11 bottom) and the Raman absorption spectrum shown in

black (Fig. 4.11 bottom).

4.5 Zero energy scattering length a

In this section, I derive the expression for the zero energy (k Ñ 0q scattering length

that results from a magnetic Feshbach resonance controlled with two optical fields. I

list all the relevant equations for the calculation of the scattering length and evaluate
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Figure 4.11: (top) EIT loss suppression plot in Fig. 4.10 expanded around the
suppression region. The additional peak at the center shows a much richer spectrum
than a simple EIT spectrum. The additional peak at the center arises due to two-
photon Raman absorption from the broad Feshbach resonance as explained in section
4.3.4. (bottom) EIT spectrum from the narrow Feshbach resonance states (orange)
and two-photon Raman absorption from the broad Feshbach resonance states (black)
shown separately. The plot in red (top) is the sum of the EIT loss suppression
spectrum (orange) and two-photon Raman absorption (black) spectrum.

them in the limit k Ñ 0. From chapter 3 (Eq. 3.138), the phase shift ∆ induced due

by a magnetic Feshbach resonance for k Ñ 0 is

x cot ∆ “
∆̃0

1` ∆̃0

“ ´
|abg|

aFBrBs
. (4.17)

Hence,

aFBrBs

|abg|
“ ´

1` ∆̃0

∆̃0

“ ´1´
1

∆̃0

. (4.18)
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Similiarly, for k Ñ 0, Eq. 3.129 becomes

Lp∆̃0, xq “
1

∆̃2
0

. (4.19)

Then Eq. 3.116 and Eq. 3.117 yield,

SBp∆̃0, xq “ SNp∆̃0, xq “
1

∆̃0

. (4.20)

We recall from chapter 3 (Eq. 3.132 and Eq. 3.137) that the optically induced phase

shift φ and the total phase shift δ are defined by

x cotrφpkqs “ ´
∆̃epxq `

Ω̃2
2

4 δ̃epxq
`

Ω̃2
1

4
~γe

2µB ∆B
Sp∆̃0, xq `

i
2

Ω̃2
1

4
~γe

2µB∆B
Lp∆̃0, xq,

(4.21)

and

x cot δ “
x cot ∆x cotφ´ x2

x cot ∆` x cotφ
. (4.22)

For the case k Ñ 0, the optically induced phase shift is obtained by substituting

Eq. 4.19 and Eq. 4.20 in Eq. 4.21

x cotrφpxqs “ ´
∆̃ep0q `

Ω̃2
2

4 δ̃ep0q
`

Ω̃2
1

4
~γe

2µB ∆B
1

∆̃0
` i

2

Ω̃2
1

4
~γe

2µB∆B
1

∆̃2
0

“ ´
|abg|

aφ
, (4.23)

aφ
|abg|

“

Ω̃2
1

4
~γe

2µB∆B
1

∆̃2
0

”

∆̃ep0q `
Ω̃2

2

4 δ̃ep0q
`

Ω̃2
1

4
~γe

2µB ∆B
1

∆̃0
´ i

2

ı

”

∆̃ep0q `
Ω̃2

2

4 δ̃ep0q
`

Ω̃2
1

4
~γe

2µB ∆B
1

∆̃0

ı2

` 1
4

. (4.24)

The total phase shift δ for the case k Ñ 0 is obtained by using Eq. 4.17 and Eq. 4.23

in Eq. 4.22

x cot δ “

´

´
|abg |

aFB

¯´

´
|abg |

aφ

¯

´
|abg |

aFB
´
|abg |

aφ

“ ´
|abg|

aFB ` aφ
. (4.25)
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Also, as k Ñ 0, we can write

x cot δ “ ´
|abg|

a
. (4.26)

From Eq. 4.25 and Eq. 4.26, we have the total zero energy scattering length

a “ aFB ` aφ. (4.27)

Substituting Eq. 4.18 and Eq. 4.24 in Eq. 4.27,

a

|abg|
“ ´1´

1

∆̃0

`

Ω̃2
1

4
~γe

2µB∆B
1

∆̃2
0

”

∆̃ep0q `
Ω̃2

2

4 ˜δp0q
`

Ω̃2
1

4
~γe

2µB ∆B
1

∆0
´ i

2

ı

”

∆̃ep0q `
Ω̃2

2

4 ˜δp0q
`

Ω̃2
1

4
~γe

2µB ∆B
1

∆0

ı2

` 1
4

, (4.28)

where ∆̃ep0q is the momentum independent single photon detuning and is defined as

∆̃ep0q “ ∆L´ 2µBpB´Bref q. ∆L is the control laser detuning at the reference mag-

netic field Bref . The momentum independent two-photon detuning δ̃ep0q is defined

as δ̃ep0q “ ∆ep0q ´∆2, where ∆2 is the detuning of the EIT laser.

The above equation is the final expression for the total scattering length predicted

by the continuum-dressed state model. The first term is a result of the magnetic

Feshbach resonance and the second term is the optically induced change. As we can

see, when Ω1 Ñ 0, we are left with only the magnetic Feshbach resonance part for

the total scattering length.

4.5.1 Zero energy scattering length a near the broad Feshbach resonance

Fig. 4.12 shows scattering length a and the corresponding two-body loss rate constant

K2 as a function of single photon detuning ∆e using Eq. 4.28 near the Broad Feshbach

resonance at 825 G.

The scattering length a without optical fields is shown as the black horizontal

line. It is clear that when the two photon detuning δe “ 0 p∆2 “ ∆e “ 0q, the loss

is minimum and the scattering length using the two-field method (red) is equal to
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Figure 4.12: Zero energy scattering length a (top) and K2 (bottom) versus single
photon detuning ∆e near the Broad Feshbach resonance at 825 G. Zero energy scat-
tering length due to magnetic Feshbach resonance (black horizontal line), single-field
method (blue), and two-field method (red). T “ 10µK, Ω1 “ 1 γe, and Ω2 “ 1 γe.

the scattering length in the absence of optical fields (black). In other words, at the

point of zero loss (δe “ 0), there is no tuning of the scattering length. Although the

two-field method does not change the scattering length at the minimum loss point

(δe “ 0), it gives us the flexibility of changing the scattering length considerably

about the minimum loss point by making small changes in the frequency ω1 of the

control laser.
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Figure 4.13: Zero energy scattering length (top) and corresponding K2 (bottom)
versus B-field near the narrow Feshbach resonance due to magnetic Feshbach reso-
nance (black), single-field method (blue), and two-field method (red). T “ 10µK,
Ω1 “ 1 γe, Ω2 “ 1 γe, and ∆L “ 31.6 MHz.

4.5.2 Zero energy scattering length a near the narrow Feshbach resonance

Fig. 4.13 shows scattering length a and the corresponding two-body loss rate constant

K2 as a function of magnetic field near the narrow Feshbach resonance at 543.2 G

for the same parameters that were used for Fig. 4.10. The scattering length of the

unshifted resonance is shown in black at 543.2 G, which has the typical shape of a

magnetic Feshbach resonance. When a single optical field is applied, it results in the

shift of the original resonance at 543.2 G to B1res “ 541.9 G (blue).

As mentioned in section. 4.4, since the shifted narrow singlet state |g̃n1 y is an
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admixture of |gn1 y and |ey, |g̃n1 y loses the pure singlet character of |gn1 y, resulting in

much smaller variation in a, between 0.8|abg| and 1.2|abg| (Fig. 4.13 (top) blue) at the

shifted narrow resonance B1res “ 541.9 G. When the ω2 beam is applied, it mixes the

lower vibrational singlet ground state |g2y with |g̃n1 y resulting in suppression of loss

due to quantum interference. This also creates two additional artificial resonances

(Fig. 4.13 (top) red) on either side of the two-photon resonance at B “ 540.6 G and

B “ 542.4 G, where the loss is maximum. At the two-photon resonance, similar to

the broad Feshbach resonance, the scattering length due to two-field method is equal

to the scattering length in the absence of any optical fields.

4.6 Effective range re

In this section, we will discuss the advantages of our two-field method to control the

effective range in ultracold gases. We will use the total phase shift derived in chapter

3 Eq. 3.137 to calculate the optically induced change in the effective range due to

our two-field method.

From the effective range expansion in Eq. 1.2, we know the relationship between

the scattering phase shift δpkq and the relative momentum k as k Ñ 0 is given by

k cot δpkq u ´
1

a
`
k2

2
re, (4.29)

where a is the zero energy s-wave scattering length and re is the effective range.

Using x ” k|abg|, in Eq. 4.29,

x cot δpxq “
´|abg|

a
`
x2

2

re
|abg|

. (4.30)

From the above equation, we can determine the effective range re in terms of |abg|

by expanding the expression for x cot δpxq in Eq. 3.138 in powers of x and computing
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Figure 4.14: Effective range versus control beam detuning ∆e for the two-field
method, demonstrating maximum enhancement at the point of minimum loss. T “
5µK; B “ 840 G ; Ω1 “ 3 γe; Ω2 “ 0.5 γe.

twice the coefficient of the quadratic term in x. In the absence of optical fields, the

effective range is given in chapter 2 (Eq. 2.72) as r
p0q
e “ ´2ε|abg|, where ε is defined

above. For the broad and narrow resonances in the 6Li 1-2 mixture, r
p0q
e » ´1 a0 and

´7ˆ 104a0, respectively.

Fig. 4.14 shows re{|r
p0q
e | for the broad resonance as a function of detuning of the

control beam for the two-field method. Note that the effective range is increased

in magnitude by a factor of 35 at the point of minimum loss, where K2 is strongly
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suppressed. We can see that the two-field method modifies the effective range of the

broad resonances in 1-2 mixture of 6Li and therefore can be used as a general tool

to modify the effective range in ultracold gases.

4.7 Two-field optical method near the narrow Feshbach resonance
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Figure 4.15: Using the closed-channel EIT to maximize tunability near a mag-
netic Feshbach resonance. Zero energy scattering length (top) and corresponding
K2 (bottom) versus B-field near the narrow Feshbach resonance due to magnetic
Feshbach resonance (black), single-field method (blue) and two-field method (red).
a for two-field method (red) and magnetic Feshbach resonance (black) overlap for
∆2 “ 0, indicating creation of an optically tunable resonance at the original magnetic
Feshbach resonance position. T “ 10µK, Ω1 “ 1 γe, Ω2 “ 1 γe, and ∆L “ 31.6 MHz.

It might seem from the discussion presented in section 4.5, that the two-field

116



-0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1000

-500

0

500

1000

δe (MHz)

a
/|a

b
g
|

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

δe (MHz)

K
2
[1
0-
11
cm

3
/s
]

Figure 4.16: Using the closed-channel EIT to optically tune interactions by chang-
ing laser frequency. Zero energy scattering length a (top) and corresponding K2

(bottom) versus two-photon detuning δe near the narrow Feshbach resonance due
to magnetic Feshbach resonance (black), single-field method (blue) and two-field
method (red). Scattering length a for two-field method (red) can be tuned from
negative to positive value with minimum loss. K2 for single-field method is off scale
and is not shown. T “ 10µK, Ω1 “ 0.1 γe, Ω2 “ 1 γe, and B “ 543.2 G.

method does not provide us any net gain in the tunability of scattering length.

This is not true. Fig. 4.15 illustrates the potential of the two-field method when the

optimum parameters are chosen. Here, the frequency of the EIT beam is chosen such

that it suppresses loss at 543.2 G, i.e., ∆2 “ ∆1 as illustrated in Fig. 4.3. The EIT

beam completely nullifies the effect of the control beam through destructive quantum

interference, snapping the shifted resonance back to 543.2 G. The resonance recreated

at 543.2 G using two optical fields is optically tunable, has minimum optical loss, and
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has the pure character of the unshifted resonance. Hence the two-field method can

allow us to perform many interesting non-equilibrium thermodynamics experiments.

For example, in order to demonstrate spatially varying interactions on an atom

cloud, we can do experiments at 543.2 G where the control beam illuminates the

entire cloud and the EIT beam illuminates only the center. The center of the atom

cloud where both the control beam and the EIT beam overlap will be strongly inter-

acting with minimum loss (Fig. 4.15 red) as the two-field method restores the original

resonance at 543.2 G. The regions of the atom cloud where only the control beam is

present will be non-interacting (Fig. 4.15 blue) with reduced optical loss because the

control beam will have shifted the resonance from 543.2 G. Hence, we can create a

strongly interacting system sandwiched between two non-interacting systems using

the two-field method.

One of the primary advantages of the two-field method over single field methods is

its ability to tune the interactions by changing the laser frequency. This is illustrated

in Fig. 4.16 where the scattering length and the corresponding K2 is shown as a

function of the two-photon detuning δe “ ∆2 ´∆e at a fixed magnetic field of 543.2

G. Note the two-photon detuning can be changed by either changing the frequency

ω1 of the control laser or frequency ω2 of the EIT laser. The vertical dashed line in

Fig. 4.16 indicates two-photon detuning δe “ 0.

Fig. 4.16 (top) shows that the scattering length can be tuned from negative to

positive by changing the two-photon detuning near δe “ 0 with minimal loss as

shown by the corresponding K2 in Fig. 4.16 (bottom). Furthermore, it can be seen

from Fig. 4.16 that the two-body interactions can be tuned from weakly-interacting

(a{|abg| « 0) when δe “ 0 to strongly interacting (a{|abg| “ 500) when δe “ 0.35

MHz. Therefore, the closed-channel EIT method can provide us an experimental

“knob” where a small frequency change of 0.35 MHz can tune the interaction in an

ultracold gas from weakly-interacting to strongly interacting.
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Figure 4.17: Zero energy scattering length a (top) and two-body loss rate coefficient
K2 (bottom) as function of ω1 (detuning ∆e) for two-field (red) and single-field (blue)
methods. Scattering length without optical fields (green); T “ 5µK; B “ 840 G;
Ω1 “ 1 γe; Ω2 “ 2 γe; The minimum point of the red K2 curve occurs for ∆e “ 0,
where the two-photon detuning δ “ 0. Red and blue rectangular boxes indicate low
loss regions of interest for two-field and single field methods, respectively.

4.8 Two-field optical method near the broad Feshbach resonance

In this section, we will discuss the advantages of closed-channel EIT method near the

broad Feshbach resonance. In addition to suppressing atom loss, the closed-channel

EIT method has other advantages compared to single-field methods. Using closed-

channel EIT, a small frequency change in the frequency of either the ω1 field or

ω2 field results in large changes in the scattering length. Since single-field methods

use large detunings to avoid atom loss, small changes in frequency of the optical
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Figure 4.18: Two-body loss rate constant K2 versus zero energy scattering length
a for single-field (top) and two-field (bottom) optical methods, using the same pa-
rameters as in Fig. 4.17. For the single-field method, tuning from point A to point B
requires a change in ∆e from -100 MHz to -7.5 MHz, where K2 “ 27ˆ 10´11 cm3/s.
In contrast, for the two-field method, tuning from point C to point D requires a
change in ∆e from -4.6 MHz to +4.6 MHz, where K2 “ 3.6ˆ 10´11 cm3/s.

field will have negligible effect on the scattering length. In contrast to intensity

tuning employed in single-field methods, our technique provides a general method

of suppressing unwanted changes in the total trapping potential as the two-body

parameters are varied. For example, near the broad |1y ´ |2y Feshbach resonance in

6Li we can tune a by 4.6|abg| with the two-body loss rate constant, K2, 7.5 times

smaller compared to single-field methods.

Fig. 4.17 shows the zero energy scattering length a and the relative momentum

120



averaged two-body loss rate constant xK2y as a function of single photon detuning

∆e for both two-field (red) and single-field (blue) methods, near the broad Feshbach

resonance at 832 G using the continuum-dressed model. We take B “ 840 G, T “

5µK, Ω1 “ 1 γe, and Ω2 “ 2 γe. For the single field method, the region of low

loss (blue box) occurs at large detuning where the a varies slowly as a function of

∆e. This then necessitates large changes in frequency for relatively small changes in

scattering length. In contrast, low loss occurs for the two-field method at the two-

photon resonance, where the scattering length changes most rapidly with ∆e (red

box). Hence, small changes in the detuning of ω1 can result in large changes in the

scattering length.

To quantify these ideas, we compare single-field methods and closed-channeL EIT

using our theoretical model to calculate xK2y for a fixed change |∆a| “ 4.6|abg|. In

Fig. 4.18 (top), the minimum loss point for the single-field method occurs at points

A and A1, for large detunings ∆e “ ¯100 MHz. Tuning to point B (B1), which

is 4.6|abg| away on the horizontal axis, is achieved by setting ∆e to -7.5 MHz (4.5

MHz), where K2 “ 27ˆ 10´11 cm3/s, (K2 “ 39ˆ 10´11 cm3/s). In contrast, for the

two-field method, we tune through the point of minimum loss from C to D. Here

∆e changes from -4.6 MHz to +4.6 MHz, and at points C and D, K2 “ 3.6ˆ 10´11

cm3/s, 7.5 times smaller than that of the single-field method, while still achieving

the same change in scattering length.

From the above discussion, we see an important advantage of the two-field method:

Not only is there a reduction in the loss rate, but the frequency change needed to pro-

duce a given change in the scattering length is much smaller than for the single-field

method.
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4.9 Evaluation of optically induced atom loss from K2

In our optical control experiments, we illuminate the atoms with optical fields and

measure atom loss. However, we only derived the expression for the two-body loss

rate constant K2 using the continuum-dressed state model. Therefore, in order to

fit the experimental data with the continuum-dressed state model, we need to derive

an expression that relates atom loss and K2, which will be the focus of this section.

Let nÒ and nÓ be the density of spin up and spin down atoms in the two hyperfine

levels, respectively. Then the loss rate per unit volume can be written as

9nÒ “ ´nÓ vr σinelastic nÒ “ 9nÓ (4.31)

where nÓ vr is the incoming flux and nÓ vr σinelastic is the collision rate.

From Eq. 4.2, we know

K2pkq “ vrel σinelastic “
~k
µ
σinelastic, (4.32)

Using Eq. 4.32 in Eq. 4.31, we obtain

9nÒ ` 9nÓ “ ´2K2pkqnÒnÓ (4.33)

The total loss rate 9N is

9N “

ż

d3~r p 9nÒ ` 9nÓq (4.34)

Substituting Eq. 4.33 in Eq. 4.34, we get

9N “ ´2

ż

d3~rK2pkqnÒnÓ (4.35)

For thermal non-degenerate gas that has a classical Boltzmann distribution of

relative momentum k, we know from chapter 4 (Eq. 4.12)

xK2pkqy “

ż 8

0

4πk2dk

pk0

?
πq3

e
´ k2

k2
0 K2pkq (4.36)
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Substituting Eq. 4.36 in Eq. 4.35, yields

9N “ ´2

ż

d3~r nÒnÓ

ż 8

0

4πk2dk

pk0

?
πq3

e
´ k2

k2
0 K2pkq (4.37)

For a 50-50 mixture,

nÒ “ nÓ “
n

2
;n “ nÒ ` nÓ. (4.38)

Therefore,

2

ż

d3~r nÒ nÓ “
1

2

ż

d3~r n2
“

1

2
Nn̄ “

N2

2

n̄

N
, (4.39)

where n̄ is the average density and is given by

n̄ ”
1

N

ż

d3~r rnp~rqs2. (4.40)

Substituting Eq. 4.39 in Eq. 4.37, we obtain

9N “
N2

2

n̄

N

ż 8

0

4πk2dk

pk0

?
πq3

e
´ k2

k2
0 K2pkq (4.41)

Now we let

Γ ”
1

2

n̄

N

ż 8

0

4πk2dk

pk0

?
πq3

e
´ k2

k2
0 K2pkq (4.42)

Substituting Eq. 4.42 in Eq. 4.37, we get

9N

N2
“ ´Γ

Integrating both sides and solving for Nptq, we get

ż N

N0

dN

N2
“ ´Γ

ż t

0

dt
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Nptq “
N0

1`N0Γt
(4.43)

Nptq

N0

“
1

1`N0Γt
, (4.44)

where N0 is the initial total atom number. We use Eq. 4.44 to compare our experi-

mental atom loss data to the continuum-dressed state model in chapter 6.

In this chapter, the continuum dressed model is used to derive the two-body loss

rate constant K2, the zero energy scattering length a, and the effective range re.

Furthermore, it is shown that the two-field method allows us to tune the scattering

length and the effective range about the minimum loss region with small changes in

laser frequency. It is further illustrated that the two-field method can create spatially

selective regions of strong interactions in an otherwise non-interacting system near a

magnetic Feshbach resonance. Hence, the two-field method provides a general recipe

to pursue non-equilibrium thermodynamic experiments in ultracold gases near a

magnetic Feshbach resonance. In chapter 6, the continuum-dressed state model is

tested by comparing the calculated K2 to the experimental data near the broad and

the narrow Feshbach resonance in 6Li.
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5

Experimental Methods

In this chapter, I will discuss the experimental setup that is used for the two-field

optical method to control interactions in 6Li. The experiment is done in two steps,

namely, (i) creating an ultracold gas of 6Li atoms and (ii) controlling interactions

in the ultracold gas using optical fields. The experimental setup for creating an

ultracold gas of 6Li atoms is extensively discussed in previous thesis from our group

and the recent upgraded experimental setup can be found in Ethan Elliot’s thesis [61].

Hence, I will briefly summarize the essential details in this chapter. However, the

experimental setup to control interactions in ultracold gas using our two-field method,

which is the primary focus of my PhD work, will be discussed in detail.

5.1 Laser cooling and trapping of atoms

In this section, we will discuss the basic technique and the experimental apparatus

used in our lab to cool atoms to temperatures near absolute zero. We use a Coherent

dye laser that is pumped by a Coherent Verdi laser for our laser cooling and trapping

experiments. The Verdi operates at 532 nm with an output power of 6 W. The

dye laser is operated at 670.9 nm corresponding to the D2 line of 6Li. We get
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approximately 800 mW of power from the dye laser. The beam from the dye laser is

processed further to generate all the beams necessary for our cooling and trapping

experiments, namely, the “slower” beam, the MOT (Magneto-optical trap) beams

and, the “repumper” beams, whose purpose is explained in detailed below. The dye

laser is locked to fluorescence signal from a 6Li oven corresponding to the transition

from the ground state 2S1{2 to the 2P3{2 excited state, which is conventionally called

as the D2 transition of 6Li. The transition linewidth for the D2 transition is 5.9 MHz.

The 2S1{2 ground state of 6Li further splits into F “ 1{2 and F “ 3{2 due to hyperfine

splitting. The primary objective of our laser cooling and trapping techniques is to

produce ultracold atoms in the F “ 1{2 ground state of 6Li.

5.1.1 6Li oven - Generating the atoms

The first step in producing cold atoms is to generate atoms from an atom source. We

produce hot atoms from a lithium oven that is heated to approximately 400 0 C. We

have two 6Li ovens in our lab, namely, the “main” oven and the “reference” oven. The

“main” oven supplies the atoms for our experiments. The reference oven generates

the florescence signal for frequency locking the dye laser. The atoms from the “main”

oven enter the ultra-high vacuum chamber for further cooling and trapping.

5.1.2 Zeeman slower and the “slower” beam - Initial cooling

Fig. 5.1 illustrates initial cooling and precooling stages of 6Li atoms. The hot atoms

generated in the oven are collimated and enter the region of Zeeman slower (explained

below) in the vacuum chamber, where they are illuminated by a “slower” beam. The

“slower beam” is a near resonant counter-propagating beam with approximately 140

mW of power and initially slows down the atoms. The reduction in the velocity of

the atoms is achieved as the atoms absorb photons in the direction opposite to which

they travel and emit photons in random directions. Hence, the net momentum is
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Figure 5.1: Experimental setup for initial cooling of 6Li atoms by the Zeeman
slower and the slower beam and precooling by the MOT beams, repumper beams
and MOT coils. MOT and repumper beams are overlapped and are shown together
in red. Inset shows fluorescence from the atoms trapped in the MOT.

reduced in the direction in which the atoms are traveling. Atoms that are initially

resonant with the slower beam when moving rapidly, will no longer be resonant as

they slow down, becoming “red” detuned due to the Doppler shift. This problem is

overcome by the use of Zeeman slower, which is a set of magnetic coils that generates

a spatially varying magnetic field in the direction in which the atoms are moving.

The magnetic field generated by the Zeeman slower compensates for the Doppler shift

by producing a spatially varying Zeeman shift to the energy levels of the atoms. As

the atoms exit the Zeeman slower region, the velocity of the atoms is approximately

30 m/s.
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5.1.3 Magneto-optical trap - Precooling

After exiting the Zeeman slower region, the atoms enter the main part of the vacuum

chamber, where further cooling is achieved by the use of a magneto-optical trap

(MOT). The MOT is a combination of optical fields and magnetic fields that provides

“precooling” of atoms for our experiments. In addition to cooling the atoms, the

MOT provides spatial confinement of atoms. The MOT consists of six optical beams

(3 pairs of retro reflected beams) that illuminate the atoms in all three directions

providing 3-dimensional cooling. The six beams provide cooling as the atoms absorb

photons opposite to the direction in which they are traveling and emit photons in

random directions. Therefore, there is a net momentum kick opposite to the velocity

of the atoms. As the velocity of the atoms are reduced in all three directions, the

atoms become “red” detuned with the MOT beams due to the Doppler shift and can

slowly disperse through random walk. This is avoided by the use of MOT magnetic

coils that compensates for the Doppler shift by the providing the zeeman shift of the

energy levels of the atoms.

The frequency of the MOT beams primarily corresponds to the F “ 3{2 ground

state to the excited state transition. However, the atoms that exit the Zeeman

slower region, will populate both the F “ 1{2 and F “ 3{2 ground states. The

F “ 1{2 ground state is 228 MHz lower in energy than the F “ 3{2 ground state.

In order to cool the atoms that populate both the ground states, we use an acousto-

optical modulator (AOM) to generate an additional optical beam, the “repumper”

beam, whose frequency corresponds to the F “ 1{2 ground state to the excited state

transition. The MOT beam and the “repumper” beam are overlapped and their

powers are empirically chosen to be in the ratio of 3:1.

The MOT precooling is done in three phases. In the “loading” phase, both the

MOT beam and the repumper beam are detuned by about 30 MHz from resonance.
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The loading phase will initially load the atoms exiting from the slower region into

the MOT. The second phase is the “cooling” phase, where both the MOT beams and

the “repumper” beams are tuned to within 3 MHz of resonance. The final phase is

the “optical pumping” phase, where the MOT beam is tuned to resonance and the

“repumper” is turned off. The optical pumping phase transfers all the atoms in the

F “ 3{2 ground state to the F “ 1{2 ground state.

At the end of the MOT precooling phase, we have about 300 million atoms in the

F “ 1{2 ground state at a Doppler limited temperature of 140µK. Fig. 5.1 (inset)

shows fluorescence from the atoms trapped in the MOT.

5.1.4 Far off-resonance trap (FORT) - Evaporative cooling

Fig. 5.2 shows the experimental setup for evaporative cooling of 6Li atoms in a CO2

optical dipole trap and absorption imaging using a resonant beam. We load the

atoms from the MOT into another optical trap, the far off-resonance trap (FORT),

for evaporative cooling. The basic principle of the FORT is that an optical beam,

far detuned from the resonance frequency of the atoms, will create a dipole force on

the atoms that depends on the intensity of the optical beam and the polarizability

of the atoms. The interaction energy Udip created by an optical beam of intensity I

on an atom of polarizability α is

Udip “ ´
1

2 ε0 c
α I. (5.1)

For large detunings ∆ ąą ωres, the polarizability of an atom α can be written in

terms of its static polarizability αs and resonance frequency ωres

α “
αs

1´ ω2{ω2
res

(5.2)

From Eq. 5.1 and Eq. 5.2, we can see that a blue detuned optical beam (ω ą ωres)

will create an repulsive potential and a red detuned optical beam (ω ă ωres) will
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Figure 5.2: Experimental setup for evaporative cooling of 6Li atoms in a CO2

optical dipole trap and absorption imaging using a resonant beam. The high field
coils generate the magnetic field required for evaporative cooling at 832.2 G. Atoms
are imaged with a CCD camera and processed to generate a false color image.

create an attractive potential. For a cylindrically symmetric gaussian beam, the

intensity is

Ipr, zq “
I0

1` pz{z0q
2

exp

ˆ

´
2r2

r2
0

˙

, (5.3)

where I0 is the peak intensity, r0 is the 1{e2 intensity radius of the beam, and z0 is

the Raleigh range. Substituting Eq. 5.3 in Eq. 5.2, we arrive at the expression for

the spatially varying dipole potential for a Gaussian far off-resonance detuned beam,

Udip “
U0

1` pz{z0q
2

exp

ˆ

´
2r2

r2
0

˙

, (5.4)
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where U0 is the maximum trap depth and is defined as

U0 “
αs I0

2 ε0 c
. (5.5)

In our laboratory, we create the FORT by making use of an optical beam gen-

erated by a Coherent DEOS CO2 laser operating at 10.6µm with an output power

of 140 W. After collimating the beam through a telescope, we use a 19 inch focal

length lens in front of the main chamber to focus the beam to a 1{e2 width of about

60µm. The power of the focused beam at the atoms is approximately 60 W. This

give a peak intensity of 2 ˆ 106 W/cm2 corresponding to a maximum trap depth

of approximately 1 mK, Eq. 5.5. The CO2 FORT beam trap provides confinement

in all three directions, with tighter confinement in the radial direction and weaker

confinement in the axial direction, Fig. 5.3.

The evaporative cooling using the FORT consists of two stages, namely, free

evaporation and forced evaporation. In the free evaporation stage, after transferring

the atoms from the MOT into the FORT, we wait for a few seconds for the atoms

to rethermalize at full trap depth, i.e., maximum intensity of the CO2 laser. During

rethermalization, atoms collide with one another resulting in exchange of energy from

hot atoms to cold atoms, ultimately causing the hottest atoms to be kicked out from

the FORT.

In the forced evaporation stage of evaporative cooling, the intensity of the CO2

laser is reduced thereby lowering the trap depth of the FORT. As the trap depth

is reduced, the hotter atoms escape from the trap leaving only the colder atoms to

remain in the reduced trap depth. This reduced trap depth is called the “lowest-

well” trap depth. The lowest-well value and the time to reach the lowest-well value

determines the final temperature of our atom cloud. We choose the “lowest-well”

trap depth value and the time to reach the lowest-well value, based on the desired

final temperature requirements of our atom cloud.
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After forced evaporation, the trap depth is again re-raised to a final trap depth.

The final trap depth determines the final density of the atomic cloud. Therefore,

we adjust the “lowest-well” trap depth value, the lowering time, and the final trap

depth value, based on our requirements of temperature and density for the resulting

ultracold atomic gas.

For evaporative cooling to efficiently work, the rate of collisions between atoms

should be maximized. At zero magnetic field, the |F “ 1{2y state is two-fold degen-

erate with the |mf “ 1{2y and |mf “ ´1{2y state. However, at high magnetic fields,

this degeneracy is broken resulting in a two component mixture, consisting of the two

lowest hyperfine states |1y and |2y. The |1y ´ |2y mixture has a Feshbach resonance

at 832.2 G where the scattering length diverges and results in a high collision rate.

Therefore, after transferring the atoms from the MOT into the FORT, we sweep

the magnetic field to 832.2 G to perform evaporative cooling. However, to perform

experiments near the narrow Feshbach resonance at 543.2 G, we cannot utilize the

broad Feshbach resonance for evaporative cooling, since sweeping the magnetic field

after evaporative cooling at 832.2 G to a value below 700 G results in loss of atoms

due to three-body collisions. Therefore, when we perform experiments near the nar-

row Feshbach resonance, we sweep the magnetic field to 300 G, where the scattering

length is about 300 a0 to perform evaporative cooling.

5.1.5 Imaging the atom cloud

After evaporative cooling of atoms in the FORT, we turn off the FORT and image

the atoms using absorption imaging. Approximately 1 mw of resonant light from the

dye laser is illuminates the atoms for about 5µs. The time between switching off the

FORT and the application of the imaging pulse is called the time of flight (TOF).

We generally use a TOF of 200µs at full trap depth.

The atoms absorb the resonant light from the imaging pulse and prevent the
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light from reaching the CCD array of the Andor camera that is placed behind the

atom cloud. As the size of the imaging beam is much larger than the size of the

atom cloud, a shadow of the atom cloud is observed in the camera. After taking a

background image, with no atoms present, the image of the atoms can be extracted

by subtracting the background image from the image where the atoms are present.

The subtracted image is further processed to extract the total atom number and the

width of the atom cloud. From the total atom number and the width of the atom

cloud, the temperature and the density of the atom cloud is calculated.

Fig. 5.3 shows the absorption image of an atom cloud that has been evaporatively

cooled at 832 G with a “low-well” value of 0.5 % and a final trap depth of 100 %. The

temperature of the atom cloud is 2µK. In this section, we discussed the necessary

z

x

Figure 5.3: Absorption image of an atom cloud evaporative cooled at 832 G with
a “low-well” value of 0.5 % and a final trap depth of 100 %. The temperature of the
atom cloud is 2µK. The direction of propagation of the CO2 optical beam (axial) is
labeled as z. The dipole trap provides strong confinement of the the atoms in the
radial direction (x and y).

steps involved in producing a cold Fermi gas. In the next section, we will focus on

the experimental setup for the two-field method to optically control interaction in
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the cold gas.

5.2 Experimental setup for two-field optical method

Figure 5.4: Basic level scheme for the two-field optical technique. Optical fields of
frequencies ω1 (detuning ∆1) and ω2 (detuning ∆2) , respectively, couple two singlet
ground molecular states |g1y and |g2y to the singlet excited molecular state |ey; VHF
is the hyperfine coupling between the incoming atomic pair state in the open triplet
channel |T, ky and |g1y, which is responsible for a magnetically controlled Feshbach
resonance.

I will start this section by briefly summarizing the two-field optical method to

control interaction in 6Li, Fig. 5.2. We use two optical fields, namely, the control field,

with angular frequency ω1 and Rabi frequency Ω1 and the EIT field, with angular

frequency ω2 and Rabi frequency Ω2. The control field couples the singlet ground

state |g1y to the singlet excited state |ey and the EIT field couples the singlet ground

state |g2y to the singlet excited state |ey. The control field creates a light shift of the

state |g1y, thereby changing the scattering length by modifying the overlap between

the triplet continuum |T, ky and |g1y. However, the control field induces atom loss

due to spontaneous scattering of atoms. Therefore, we use a EIT field to suppress

spontaneous scattering through destructive quantum interference.
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The design of the experimental setup for the two-field optical experiment should

include the following requirements,

(i) Large frequency offset : The frequency difference between the control and the

EIT field is one of the important factors taken into consideration while building the

optical system. For the case of 6Li, the difference between |g1y and |g2y is approx-

imately 57 GHz near 832 G. In the case of small frequency offsets, a simple single

laser system with additional frequency generated using a acousto-optical modulator

(AOM) or electro-optical modulator (EOM) would suffice. However, frequency dif-

ferences in the range of tens of GHz requires more complicated setup.

(ii) Relative frequency stability : Since we use quantum interference techniques

to suppress spontaneous scatter, relative frequency stability between the control and

EIT laser limits the effective linewidth of the ground state coherence created by the

two-field method. Hence, the relative frequency stability between the control and

EIT field is very important.

(iii) Wide range frequency tunability : The frequency ω1 of the control field

depends on the magnetic field. Since we want to do experiments both near the broad

resonance at 832.2 G and the narrow resonance at 543.2 G, we would like to have an

optical system with wide frequency tunability.

5.2.1 Basic experimental setup

Based on the above requirements, we designed an optical system that uses three laser

sources, namely, a reference laser, a control laser, and a EIT laser. The reference

laser provides a stable frequency reference for the control and EIT laser. The control

laser generates the optical field for the v “ 38 to v1 “ 68 transition and the EIT

laser generates the optical field for the v “ 37 to v1 “ 68 transition. The frequency

difference between the v “ 38 to v1 “ 68 and v “ 37 to v1 “ 68 transition is

approximately 57 GHz. In this section, I will discuss the basic experimental setup
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Figure 5.5: Experimental setup for two-field optical control. The reference laser
and EIT laser is locked to the Fabry-Perot (FP) cavity. The FP cavity is locked to
the iodine saturation absorption signal generated by sending part of the beam from
reference laser to an iodine gas cell. The control laser is frequency offset locked to
the reference laser.
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for the two-field method. The different types of frequency stabilization techniques

employed in our setup and specific details will be explained in detail below.

The basic setup for generating the optical fields for the two-field optical technique

is shown in Fig. 5.5. We use diode lasers (Toptica TA pro) with an output power of

approximately 400 mW. The frequencies of the lasers are tuned near the wavelength

corresponding to the v “ 38 to v1 “ 68 transition, namely, 673.2 nm by measuring

the frequency using a wavemeter (Toptica WS6-200) with an absolute accuracy of

˘200 MHz. The frequency of the reference laser is stabilized by a Pound-Drever-Hall

(PDH) lock to an Fabry Perot (FP) cavity (section 5.2.2). The FP cavity can drift

due to mechanical and thermal fluctuations. A part of the beam from the reference

laser with an output power of approximately 30 mW is sent into an iodine absorption

spectroscopy setup to generate an error signal. The FP cavity is locked to the error

voltage generated from the iodine saturation absorption signal.

The main advantage of this setup is that it exploits the high bandwidth lock of

the PDH technique to minimize the fast jitter of the diode laser and simultaneously

provides an absolute frequency reference.

The control laser with frequency ω1 is frequency offset locked to the reference

laser and generates the optical field for the v “ 38 to v1 “ 68 transition. The EIT

laser with frequency ω2 is locked to a different mode of the cavity and generates the

optical field for the v “ 37 to v1 “ 68 transition which is approximately 57 GHz

higher in frequency from the v “ 38 to v1 “ 68 transition. The relative frequency

jitter between the lasers is ∆ν ă 50 kHz and the absolute frequency stability is ă100

kHz. As the optical linewidth of the molecular transitions is γe “ 2πˆ11.8 MHz, the

absolute stability is not as critical as the relative stability, which limits the effective

linewidth of the ground state coherence created by the two-field method.
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5.2.2 Frequency stabilization of lasers using PDH lock

In the optical system designed for the two-field optical method, Fig. 5.5, we stabilize

the frequency of the reference laser and the EIT laser by locking both the lasers to a

FP cavity using a PDH lock. In this section, we will discuss the PDH locking scheme

in detail.

A 5 mW beam from the reference laser is used for the PDH locking scheme. The

beam enters a electro-optic resonant phase modulator (Thorlabs EO-PM-R-30-C1)

with a resonance frequency of 30 MHz. The electro-optic modulator (EOM) phase

modulates the laser beam and generates frequency sidebands at +30 MHz and -30

MHz with respect to the laser (carrier) frequency. The EOM is resonantly modulated

at 30 MHz using a sinusoidal wave with a peak to peak amplitude of 10 V generated

using a Tektronix arbitrary waveform generator (Tektronix AFG3052C). A Glan-

Thompson polarizer (Thorlabs GTH5M-B) mounted on a high precision rotational

mount (Thorlabs PRM-1) is used in front of the EOM to match the polarization of

the beam to the polarization axis of the EOM crystal in order to avoid amplitude

modulation. The beam that exits the EOM is then sent through a λ{2 plate, po-

larizing beam splitter, and a λ{4 plate, before it is coupled to a Fabry-Perot cavity

(Coherent) with a cavity linewidth of 7 MHz and a free spectral range (FSR) of 1.5

GHz.

The λ{2 plate after the EOM controls the polarization of the laser beam entering

the FP cavity. We choose the polarization of the beam entering the FP cavity to be

s-polarized for the reference laser beam. As the phase modulated optical beam with

frequency sidebands is incident on the front face F1 of the cavity (Fig. 5.5), part

of the beam is transmitted into the cavity and part of the beam is reflected. The

ratio of the transmitted beam power to the total power is a measure of the coupling

efficiency of the cavity. The transmitted beam at the end F1 sets up a standing wave
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inside the cavity and exits the other end F2 of the cavity, when the wavelength λ of

the incident light is an integer multiple of the free spectral range i.e., λ “ nˆ FSR,

where n is an integer. When λ{2 “ n ˆ FSR, it results in an reflected “leakage”

beam that exits the front end F1 of the cavity. The cavity is aligned using the input

coupling mirrors such that both the initially reflected beam and the “leakage” beam

at the end F1 are collinear. Both the beams are then focussed on to a high bandwidth

(150 MHz) transimpedance amplified photodetector (Thorlabs PDA10A).

Near the cavity resonance, the frequency sidebands in the laser beam are com-

pletely reflected from the F1 end of the cavity. The “leakage” beam is anti-phase

with the reflected beam. Therefore, the carrier frequency component of the reflected

beam is completely canceled by the carrier frequency component of the “leakage”

beam. However, the sum of the beats generated between the carrier frequency of the

“leakage” beam and the upper and lower sidebands of the reflected beam generates

a frequency discriminator error signal shown in Fig. 5.6.

The error signal is extracted by mixing the photodetector signal with the mod-

ulation signal in a RF mixer (Minicircuits ZAD-1-1-+). A 10 MHz low-pass filter

(Minicircuits BLP 10.7) is added to the Intermediate Frequency (IF) port of the

mixer to remove high frequency noise. The diode laser is locked to the zero of the

error signal using a high bandwidth digital servo system (Toptica Digilock).

If the error signal has a non-zero DC component, it implies the presence of residual

amplitude modulation at the EOM. This is rectified by adjusting the Glan-Thompson

polarizer in front of the EOM to align the polarization of the laser beam to the

polarization axis of the EOM crystal. We were able to achieve a linewidth of about

20 kHz using the PDH technique.

The EIT beam is also locked to the same cavity using the PDH technique, but

enters the cavity at the F2 end. The EIT beam goes through two Acousto-Optical

Modulator’s (AOM), namely, AOM 1 and AOM 2, before entering the cavity at
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Figure 5.6: Frequency discriminator error signal (screenshot) using PDH lock.
Error signal voltage vs Laser PZT voltage. 1 V = 500 MHz. The reference laser and
the EIT laser is locked to this error signal.

the F2 end. AOM 1 (Isomet) downshifts the EIT laser’s frequency by 120 MHz

and AOM 2 upshifts the frequency by 370 MHz, for a net upshift in frequency of

250 MHz. We choose the polarization of the EIT beam before entering the cavity

to be p-polarized. Orthogonal polarizations were chosen for the EIT and reference

optical beams to prevent the transmitted EIT beam at the F1 end from reaching

the photodetector at the F1 end that is used to observe the reference laser optical

beams and vice versa.

The EIT beam is phase modulated using a resonant EOM with a resonance

frequency of 35 MHz. The EIT and reference laser beam are phase modulated at

different frequencies (30 MHz and 35 MHz) in order to avoid cross-talk. The EIT

laser is locked to a cavity mode which is approximately 57 GHz above the cavity

mode to which the reference laser is locked corresponding to the frequency difference

between the v “ 37 to v1 “ 68 and v “ 38 to v1 “ 68 transition.

A spectrum analyzer is used to record the beat frequency note between the refer-
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ence and EIT lasers locked to the same cavity mode using the PDH technique. The

FWHM (Full width at half maximum) of the beat note is used to optimize the gain

parameters of the Digilock servo system. After locking the lasers to the cavity, the

beat note observed in the spectrum analyzer had a FWHM of less than 20 kHz.

5.2.3 Locking the FP cavity using iodine saturation absorption spectroscopy

In the previous section, we discussed the locking of a diode laser to a FP cavity.

However, the cavity can drift due to mechanical and thermal fluctuations. In this

section, we will discuss the frequency stabilization of an FP cavity using iodine

doppler-free saturated absorption spectroscopy.

After locking the reference laser to the cavity, a part of the beam from the refer-

ence laser with approximately 30 mW of power is used for saturation spectroscopy.

The beam is incident on a 90{10 plate beam splitter which transmits 90% of the

power (pump beam) and reflects 10% of the power in two co-propagating beams

(probe beams). The probe beams then enter the iodine gas cell and are collected by

a balanced photo-detector which subtracts the voltage signal from both the incident

probe beams. The pump beam is double passed in an AOM which frequency mod-

ulates the pump beam as well as up shifts the frequency by 236 MHz (+118 MHz

single-pass). The AOM is modulated using an peak-peak amplitude of 3 V sine wave

at 34 KHz generated by an Agilent function generator. The frequency modulated

pump beam then counter-propagates with the probe beams and are overlapped with

one of the probe beams.

In the absence of the pump beam, the probe beam will be absorbed by iodine

molecules with a broad range of velocities and therefore result in Doppler broadening

of the absorption peak. The presence of a counter-propagating pump beam overcomes

the effect of Doppler broadening by burning a “hole” in the Doppler broadened ab-

sorption spectra as the pump and probe beams interacts with the same velocity class
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of iodine molecules. The output of the balanced photo-detector and the modulation

Figure 5.7: Frequency discriminator error signal (screenshot) from iodine satura-
tion absorption spectroscopy. Error signal voltage vs Laser PZT voltage. 1 V = 500
MHz. The reference laser is locked to the zero point of the frequency discriminator
signal marked with a red dot.

signal is sent into a lock-in amplifier to obtain the frequency discriminator error volt-

age signal spectrum shown in Fig. 5.7. As seen from the error signal spectrum, there

are multiple error signals over a span of 1 GHz since the iodine molecule has a rich

spectrum with each error signal corresponding to a transition between rovibrational

states. The entire spectrum lies approximately 800 MHz below the v “ 38 to v1 “ 68

transition. The cavity is locked to the zero of one of the error voltage signal (marked

with the red dot in Fig. 5.7 ) using a home built servo system.

5.2.4 Frequency offset lock between the reference and the control laser

In this section, we will discuss the frequency offset lock [64] between the reference

laser and the control laser, which generates the optical field for the v “ 38 to v1 “ 68

transition. As mentioned in the previous section, the reference laser is locked to

the FP cavity which in turn is locked to a iodine peak that lies 800 MHz below the
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v “ 38 to v1 “ 68 transition. Hence, in order for the control laser to generate the

optical field for the v “ 38 to v1 “ 68 transition, the control laser should be locked

with an frequency offset of `800 MHz with respect to the reference laser. The basic

schematic for the frequency offset lock is shown in Fig. 5.8.

Figure 5.8: Basic schematic for the frequency offset lock.

The reference and control laser beams (about 1 mW) are combined using using

a 50/50 beam splitter and is made incident on a high bandwidth (1 GHz) tran-

simpedance amplified photodetector (Menlosystems-FPD 310-FV). The photodetec-

tor detects the beat frequency signal between the two optical beams. The beat

voltage signal from the photodetector is send to a 1ˆ2 power splitter (Minicircuits),

which sends part of the beat signal to the spectrum analyzer and rest of the signal

to an 40 dB RF amplifier (Minicircuits). The output of the amplifier is send to a

mixer which downconverts the beat signal in the 50-100 MHz range by mixing it with

an RF signal generated by an RF signal generator. A low pass filter with a cut-off

frequency of 100 MHz is connected to the IF output port of the mixer to suppress

higher harmonics.

The downconverted beat signal is sent to a 1 ˆ 2 power splitter. One of the

outputs of the power splitter is sent directly to one input port of the phase detector

and the other output of the power splitter is sent through a coaxial delay line into

the other input port of the phase detector. The phase detector generates an output

voltage that depends on the relative phase difference between its two input signals.
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Figure 5.9: Frequency discriminator error signal (screenshot) from the frequency
offset lock between the reference and the control laser obtained by observing the beat
between them. Error signal voltage vs Laser PZT voltage. 1 V = 500 MHz. The
control laser is locked to this error signal.

The delay line introduces a frequency dependent phase shift. Since the phase shift

introduced by the delay line is frequency dependent, the phase detector generates

an error voltage that depends on the frequency difference between the reference and

the control laser. The frequency discriminator error signal voltage generated by the

phase detector as a function of control laser frequency is shown in Fig. 5.9 . A low

pass filter with a cut-off frequency of 10 MHz is added at the output of the phase

detector to suppress high frequency noise on the error voltage.

The control laser can be locked to several values of the beat frequency by choosing

one of the several zero crossings of the error signal. The spacing between the zero

crossing depends on the length of the cable and is approximately equal to c{L, where

L is the length of the cable and c is the velocity of light. The capture range is then

« c{2L. For our setup, L = 4 meters and the capture range is « 37 MHz. Wide

frequency tunability of about 250 MHz is achieved by changing the frequency in the

RF generator used for down converting the beat signal. The control laser is locked
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using a digital servo (Toptica Digilock) system. After locking, the beat note between

the reference laser and the control laser observed using the spectrum analyzer has a

full-width half maximum of less than 20 kHz (1 s sweep).

5.2.5 Spectral filtering of optical fields

One of the main issues of using a diode laser with a tapered amplifier in our two-field

optical control experiments is the wide bandwidth spectral response of the tapered

amplifier. Our wavelength of interest for controlling interactions is 672.3 nm and

the resonant wavelength for Li atoms is 670.9 nm. As the wavelength to control

interactions is approximately 2 nm far from the resonant wavelength, the off-resonant

free atom scattering rate from the 672.3 nm is very small, approximately 3 atoms/s.

However, during our experiments, when we apply light near 672.3 nm which is non-

resonant with the molecular transition to illuminate the atoms, we observe 50% atom

loss in 100 ms. This anomaly in increased atom loss rate was later discovered to be

due to the wide spectral bandwidth response of the tapered amplifier in our diode

lasers.

The tapered amplifier in addition to amplifying the 672.3 nm also transmits a

wide range of other wavelengths including the resonant wavelength of 670.9 nm. This

severely limits the lifetime of atoms due to both resonant and off-resonant heating.

Although the manufacturers data sheet for the tampered amplifier indicates a 30

dB suppression for wavelengths other than the wavelength which is amplified, it is

still not sufficient for the purposes of our experiment. For example, at an optical

beam intensity of 1 ˆ 103 W/cm2, which is typical for all our experiments, a 30 dB

suppression of other wavelengths would still transmit about 1 W/cm2 of resonant

light, which is large enough to cause significant loss. Therefore, it is very important

to filter out all other wavelengths except 672.3 nm. This is achieved by the use of a

Bragg grating wavelength filter.
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A Bragg grating has a periodic variation of refractive index which reflects a partic-

ular wavelength at a certain angle of incidence and suppresses all other wavelengths

through multipath destructive interference. After frequency stabilization of all the

lasers, the control and EIT laser beam are made incident on a Bragg grating wave-

length filter. The filter has a bandwidth of approximately 0.1 nm. With the grating

filter, we observed only 10% atom loss after 400 ms, when the atoms are illuminated

by a non-resonant (molecular) optical beam near 673.2 nm with an intensity of 1ˆ103

W/cm2.

5.2.6 Illuminating the atoms with optical fields

The reflected optical beam from the Bragg grating passes through an AOM which

acts as an optical switch for our experiments. The AOM for the control beam and the

EIT beam upshifts the frequency by 118 MHz and 125 MHz, respectively. The control

beam and the EIT beam are separately coupled into two polarization maintaining

fibers which transport the beams to the main chamber to illuminate the atoms. The

optical beam that exits the polarization maintain fiber near the main chamber passes

through a polarizing beam splitter where we choose the polarization of the optical

beam to be in the direction of the biased magnetic field. Since v “ 37 to v1 “ 68

transition is much weaker than the v “ 38 to v1 “ 68 transition, the EIT beam

requires more intensity and is therefore focused on to the atoms using a focusing lens

with a focal length of 50 cm.

The control beam has an 1{e2 radius of 750µm. Due to the error in optical

alignment, which we discovered only after taking data, the EIT beam was elliptical

in all of our experiments with a 1{e2 radius of 65µm in one direction and 140µm in

the other direction. The beam waist measurement and the alignment of the beam

on the atoms were done by imaging the optical beam using the CCD camera that

we use to image our atoms.
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Prior to concluding this chapter, I will discuss the measurement of some ba-

sic quantities such as the trap oscillation frequencies, temperature, density of our

ultracold gas, and the transition and Rabi frequencies of the optical fields. I will

also discuss the measurement of three-body loss near the narrow Feshbach resonance

which we remove from all our loss spectra presented in chapter 6.

5.3 Measurement of density and temperature of the atom cloud

In this section, I discuss the evaluation of density and temperature of our ultracold

gas by measuring trap oscillation frequencies.

5.3.1 Measurement of trap frequencies of atoms in a CO2 dipole trap

We measure the the trap oscillation frequencies using parametric resonance, which

works on the principle that energy is added to the atoms trapped in an harmonic

potential when the trap is modulated at twice the trap oscillation frequency. Previous

thesis [61] from our group explains the parametric resonance method of measuring

trap oscillation frequencies in detail.

In parametric resonance, the intensity of the optical trap is sinusoidally modu-

lated with a modulation depth of about 5 % and the width of the atom cloud is

measured as a function of the modulation frequency. When the modulation fre-

quency equals twice the trap oscillation frequency, there is a increase in the atom

cloud width due to the increase in the total energy of the atoms.

After evaporatively cooling the atoms at 300 G, we perform the experiment at 528

G where the |1y ´ |2y mixture is non-interacting due to the presence of zero-crossing

in the scattering length [65]. We modulate the intensity of the optical trap with an

sinusoidal wave at an modulation depth of 5 % and image the atoms after a time of

flight of 200µs. We fit a gaussian function of the form e´ppx´x
1q2{2σ2q to the spatial

profile of the atomic cloud and obtain the width of the atom cloud σ.
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Figure 5.10: Parametric resonance to measure trap oscillation frequencies of
atoms in an optical dipole trap. Trap oscillation frequency is half the modulation
frequency at which the resonance occurs. (top) Measurement of radial trap oscillation
frequency. Radial width as a function of modulation frequency. ωx “ 3100 Hz and
ωy “ 3350 Hz. (bottom) Measurement of axial trap oscillation frequency. Axial
width as a function of modulation frequency. ωz “ 130 Hz.

Fig. 5.10 (top) shows radial cloud width as a function of modulation frequency.

The presence of two peaks in Fig. 5.10 (top) implies that our optical dipole trap is not

perfectly symmetric in both the radial directions. From Fig. 5.10 (top), we obtain

the radial trap frequencies, ωx “ 3100 Hz and ωy “ 3350 Hz, where the smaller of

the two frequencies is conventionally called as ωx. Fig. 5.10 (bottom) shows axial

cloud width as a function of modulation frequency. From Fig. 5.10 (bottom), we

obtain the axial trap frequency ωz “ 130 Hz.
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5.3.2 Measurement of the trap oscillation frequencies for the combined CO2 dipole
and red trap

For the CO2 laser trap alone, the trap frequencies for the x, y and z directions are

determined by parametric resonance. However, in our optical control experiment we

apply two more optical beams, namely, the control beam and the EIT beam which

are red-detuned to the atomic transition. The control and the EIT optical beams

can provide additional trapping potential to the atoms thereby changing the trap

oscillation frequencies. Therefore it is important to determine the combined trap

oscillation frequency of the CO2 dipole trap and “red” trap. In this section, we

determine the trap oscillation frequencies of the combine dipole and red trap using

cloud size measurements.

The typical intensities of the control and the EIT beam used in our experiments

are 2 W/cm2 and 0.5 kW/cm2, respectively. The 1{e2 intensity radius of the control

beam is « 750 µm. The EIT beam is elliptical due to alignment error with a 1{e2

intensity radius of 70 µm in one direction and 160 µm in the other direction. Since

the control beam is much larger than the typical axial size of our atom cloud (65-75

µm), the intensity variation of the control beam across the atom cloud is negligible

and therefore it cannot create a trapping potential on the atoms. However, the EIT

beam which is approximately 250 times more intense than the control beam and

comparable in size to the atom cloud can provide additional trapping potential on

the atom cloud.

In order to check for changes in the trapping potential due to the EIT beam, we

image the atoms in the presence of the EIT beam after abruptly turning off the dipole

trap and look for additional confinement by measuring the cloud size. Fig. 5.11 (top)

shows the image of the atom cloud with no EIT beam. Fig. 5.11 (bottom) shows

the image of the atom cloud in the presence of the EIT beam. By comparing both

Fig. 5.11 (top) and Fig. 5.11 (bottom), we can clearly see that the EIT beam creates
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Figure 5.11: Atom cloud images in (top) dipole trap (bottom) dipole and red (EIT
beam) trap. The EIT beam provides additional confinement in the axial z-direction
with negligible confinement in x and y directions. The y direction is not shown in
the figure. The CO2 propagates in the z direction and the EIT beam propagates in
the y direction.

additional confinement in the axial direction with negligible confinement in the other

two directions.

To determine the correct mean atom density, it is important to measure the ωz

trap frequency including the effect of the EIT beam on the atoms. For the two-beam

trap, we find that parametric resonance does not yield a high precision measurement

of ωz. Instead, we use cloud size measurements to find the total trap frequency ωzt,

arising from combined the CO2 laser and EIT beam potentials.
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The control beam is turned off throughout the measurement. After forced evap-

oration in the CO2 laser trap near 832 G and re-raising the trap to full depth, the

EIT beam is adiabatically turned on over 30 ms. Then both the CO2 laser and EIT

beams are abruptly turned off simultaneously and the atoms are imaged after a time

of flight of 150µs to determine the 1{e size σzi of the cloud just before release. The

same procedure is repeated again, but this time, only the EIT (ω2) beam is abruptly

extinguished, so that the atoms are released from the red trap into the CO2 laser

trap, where the axial frequency is ωz ă ωzt. After a hold time of 200 ms, the atom

cloud reaches equilibrium and is imaged to determine its final axial width σzf in the

CO2 laser trap alone. From σzi and σzf , we determine ωzt using energy conservation

as follows.

Just before the ω2 beam is extinguished, the mean z-potential energy per atom

is

xUzy “
1

2
mω2

zt xz
2
y, (5.6)

where the mean cloud size is given by

xz2
y “ σ2

z . (5.7)

As the pressure is isotropic, the total potential energy of the atoms taking into

account all three directions is

xUtoty “
3

2
mω2

zt σ
2
zi (5.8)

According to virial theorem [66], the mean internal energy of a unitary gas (near

832 G) is equal to the mean potential energy. Hence the internal energy of the gas

at the time of release is also

xEinty “
3

2
mω2

zt σ
2
zi (5.9)
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Just after extinguishing the ω2 beam, the potential energy of the atoms (in the

CO2 laser trap alone) is 3
2
mω2

z σ
2
zi, since σzi has not changed. The total energy of

the atoms immediately after the ω2 beam is turned off is then

Eti “
3

2
mω2

zt σ
2
zi `

3

2
mω2

z σ
2
zi (5.10)

According to the virial theorem, after reaching equilibrium, the total energy of

the atoms Etf in the CO2 laser trap alone is twice the mean potential energy,

Etf “ 3mω2
z σ

2
zf (5.11)

By conservation of energy Eti “ Etf . Therefore, comparing Eq. 5.10 and Eq. 5.11,

we obtain

ω2
zt “ ω2

z

ˆ

2
σ2
zf

σ2
zi

´ 1

˙

, (5.12)

which gives ωzt in terms of the CO2 laser trap axial frequency, ωz.

5.3.3 Measurement of temperature of the atom cloud

In this section, we will determine the temperature of the atomic cloud using the

measured axial trap frequencies ωz and the axial cloud size σz. For an atom cloud

in a harmonic dipole trap with a gaussian spatial profile, the mean total potential

energy Utot is given by

xUtoty “
1

2
mω2

x xx
2
y `

1

2
mω2

y xy
2
y `

1

2
mω2

z xz
2
y, (5.13)

where ωx, ωy, ωz are the trap oscillation frequencies and xx2y, xy2y, and xz2y are the

mean cloud size in the x, y, z direction, respectively.

We determine the 1{e size of the atomic cloud σi by fitting a gaussian function of

the form e´ppi´i
1q2{2σ2

i q to the spatial profile of the atomic cloud. The measured 1{e
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width σi is related to the mean cloud size xi2y by

σ2
i “ xi

2
y. (5.14)

Using Eq. 5.14 in Eq. 5.13,

xUtoty “
1

2
mω2

x σ
2
x `

1

2
mω2

y σ
2
y `

1

2
mω2

z σ
2
z , (5.15)

Furthermore, for a harmonic dipole trap of potential energy U0,

U0 “
1

2
mω2

x σ
2
x “

1

2
mω2

y σ
2
y “

1

2
mω2

z σ
2
z , (5.16)

Substituting Eq. 5.16 in Eq. 5.15, we obtain

xUtoty “
3

2
mω2

z σ
2
z , (5.17)

For a strongly interacting gas, we know from virial theorem [45], the mean internal

energy is equal to the mean potential energy

xEinty “ xUtoty “
3

2
mω2

z σ
2
z , (5.18)

Therefore, the total energy of the gas is

Etot “ xEinty ` xUtoty “ 3mω2
z σ

2
z “ 3 kB T, (5.19)

where T is the temperature of the gas. From Eq. 5.19, we obtain

T “
mω2

z σ
2
z

kB
(5.20)

We use Eq. 5.20 to calculate the temperature of the gas from axial width σz and the

axial trap frequency ωz. For the data shown in Fig. 5.12, the measured temperature

using Eq. 5.20 is 7.3µK.
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5.3.4 Measurement of density of the atom cloud

In this section, we will evaluate the density of the atomic gas from the axial width

σz and trap frequencies ωx, ωy, and ωz. The average density n̄ of atoms in an atomic

cloud with gaussian atomic spatial profile is given by

n̄ “
N

p2πq3{2 σx σy σz
, (5.21)

where N is the total number of atoms and σx, σy, and σz are the 1{e widths of the

gaussian atomic spatial profile in the x, y, and z direction, respectively.

From Eq. 5.21, we can see that we need information about the total atom number

and 1{e widths in order to calculate the density of the atomic gas. However, due to

strong confinement of the atoms in the radial direction of our CO2 dipole trap, the

widths σx and σy cannot be reliably measured with the available resolution in our

camera system. Therefore, we measure only the width σz of the atom cloud in the

z-direction (CO2 laser beam propagation direction) and calculate the widths σx and

σy by measuring the trap oscillation frequencies in all three directions (sec. 5.3.1).

For a harmonic dipole trap, the dipole potential energy U0 is given by

U0 “
1

2
mω2

x σ
2
x “

1

2
mω2

y σ
2
y “

1

2
mω2

z σ
2
z “ kB T (5.22)

From Eq. 5.22, we write the widths σx, σy, and σz in terms of the temperature as

σx “

c

2 kB T

m

1

ωx

σy “

c

2 kB T

m

1

ωy

σz “

c

2 kB T

m

1

ωz
(5.23)
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Using Eq. 5.23 in Eq. 5.21, we obtain

n̄ “
Nωx ωy ωz

2π3{2

ˆ

m

kB T

˙3{2

(5.24)

We use eq. 5.24 to evaluate the density of the gas from trap frequencies ωx, ωy, and

ωz measured in sec. 5.3.1 and temperature T determined in sec. 5.3.3. The typical

densities of our atom cloud for the data shown in this thesis are « 10´10cm´3.

5.4 Determination of the Rabi frequencies

In order to fit the experimental data using the continuum-dressed state model, we

need the Rabi frequencies Ω1 and Ω2 of the control and EIT beam, respectively.

We first estimate the Rabi frequency Ω1 from the predicted electric dipole transi-

tion matrix element. In 6Li, |g1y is the 1Σ`g pN “ 0q v “ 38, vibrational state, which

is responsible for the Feshbach resonance. Starting from that state, the best Franck-

Condon factor [67] arises for an optical transition to the excited A1Σ`u pN “ 1q

v1 “ 68 vibrational state, which we take as |ey. For the v “ 38 Ñ v1 “ 68 transition,

the predicted oscillator strength is feg “ 0.034 [67]. We find that the corresponding

Rabi frequency is

Ω1 “ 2π ˆ 5.6 MHz
?
I,

where I is the intensity of the optical beam given in mW/mm2.

For the v “ 37 Ñ v1 “ 68 transition, the predicted oscillator strength is feg “

3.8ˆ 10´5 [67]. We find that the corresponding Rabi frequency is

Ω2 “ 2π ˆ 0.17 MHz
?
I,

where I is the intensity of the optical beam given in mW/mm2.

We measure the beam waist ω0 and power P of the optical beams and calculate

the intensity I “
a

2P {πω2
0. Using the measured values, we fit all of the data shown
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in the chapter 6 using

Ω1 “ 2π ˆ c1 MHz
?
I

Ω2 “ 2π ˆ c2 MHz
?
I, (5.25)

and compare the values of c1 and c2 to the predicted values of c1 “ 5.6 and c2 “ 0.17,

respectively.

5.5 Measurement of the transition frequencies

In this section, I will discuss the measurement of transition frequencies by laser

spectroscopy for the |v “ 38y Ñ |v1 “ 68y transition and |v “ 38y Ñ |v1 “ 68y.

The atoms are originally prepared in the triplet continuum state |T, ky. However,

near the broad Feshbach resonance, as explained in chapter 2, the triplet continuum

state |T, ky is mixed with the |v “ 38y ground singlet state due to the presence of

hyperfine coupling. Therefore, atoms in the triplet continuum state acquires the

singlet character of the |v “ 38y state and can be pumped to an excited vibrational

singlet state in the presence of resonant light. We perform laser spectroscopy near

the broad Feshbach resonance at 840 G where the triplet continuum state |T, ky is

strongly coupled with the |v “ 38y singlet state.

We prepare a 50:50 mixture of 6Li atoms in their two lowest hyperfine states,

|1y and |2y in a CO2 optical trap as explained in section 5.2. Since we are working

near the broad Feshbach resonance, we sweep the magnetic field to 832 G to perform

evaporative cooling. After forced evaporation, and re-raising the trap to its initial

trap depth, we have about 105 atoms in each spin state. The magnetic field is then

swept to the field of interest where we typically wait for about 2 s for the magnetic

field to stabilize. The resonant light for the |T, ky Ñ |v “ 38y transition from the

control laser then illuminates the atoms for 5 ms. The atoms in one of the spin

states are imaged after a time of flight of 150µs from which we calculate the total
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atom number and the axial width σz of the atom cloud as a function of the control

laser frequency ω1, Fig. 5.12. The frequency corresponding to the maximum atom

loss is the transition frequency of the |T, ky Ñ |v “ 38y transition. Fig. 5.12 shows

atom fraction versus single-photon detuning ∆e, where ∆e “ 0 corresponds to the

transition frequency.

With the help of the transition frequencies reported in [62] for their photoasso-

ciation experiments, we measured the transition frequency for the |T, ky Ñ |v “ 38y

at 840 G to be

ν p38 Ñ 68q “ 445.2872 p˘0.0002q ˆ 1012 Hz (5.26)
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Figure 5.12: Single field atom loss spectra as a function of single photon detuning
∆e by changing the control laser frequency ω1 at a fixed magnetic field B “ 840 G.
Maximum loss occurs for ∆e “ 0. Temperature T = 7.3 µK and intensity I = 10
mW/mm2. Each data point is the average of 5 randomized trials.

The uncertainity in the above measurement is due to the limitation in the absolute

accuracy of our wavemeter (˘200 MHz).

Fig. 5.12 shows the normalized atom loss spectra as a function of the single pho-

ton detuning by changing the control laser frequency ω1. As resonant light from

the control laser for the |T, ky Ñ |v “ 38y transition illuminates the atoms, the
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free unbound atoms which are originally in a superposition of |T, ky and |g1y due to

hyperfine mixing near a Feshbach resonance is pumped to the excited singlet molec-

ular state |ey. The atoms in the excited state spontaneously decay to all allowed

lower lying vibrational states thereby incurring atom loss. This process of optically

coupling free unbound atoms to a molecular excited bound state is called photoas-

sociation [52]. We can see that maximum atom loss occurs when the single photon

detuning ∆e is tuned to zero.
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Figure 5.13: Loss suppression near the broad Feshbach resonance. Atom loss
spectra as a function of single photon detuning ∆e by changing the control laser
frequency ω1 at a fixed magnetic field B “ 840 G. The detuning ∆2 of the EIT beam
for the |g2y ´ |ey transition is ∆2 “ 0 MHz. Loss suppression ocuurs when the two-
photon resonance condition δe “ ∆2´∆e “ 0 is satisfied i.e., ∆e “ 0 MHz. Intensity
of control field and EIT field are 3.5 mW/mm2 and 500 mW/mm2, respectively

As the energy of the triplet continuum |T, ky tunes downward with B-field by an

amount 2µBB, the resonant frequency for the |T, ky Ñ |v “ 38y transition tunes with

the B-field at the rate of 2µBB{~ “ 2.8 MHz/G. The same experiment is repeated

at various magnetic fields where atom loss is observed by tuning the control laser

frequency ω1 and we verified that the triplet energy tuning rate is indeed 2.8 MHz/G.

In order to measure the transition frequency for the |v “ 37y Ñ |v1 “ 68y,

158



similar to the single field experiment, we initially perform laser spectroscopy. Here,

we illuminate the atoms with both EIT and control laser beams and look for loss

suppression by changing the frequency ω2 of the EIT beam with the control laser

frequency ω1 held constant.

With the help of the recently reported results in [68], we measured the transition

frequency for the |v “ 37y Ñ |v1 “ 68y to be

ν p37 Ñ 68q “ 445.3442 p˘0.0002q ˆ 1012 Hz (5.27)

The uncertainty in the above measurement is due to the absolute accuracy of our

wavemeter (˘200 MHz).

Once we observe loss suppression, we measure the loss suppression spectra at 840

G by changing the control laser frequency ω1 with the EIT laser frequency ω2 held

constant. Fig. 6.8 show loss suppression spectra near the broad Feshbach resonance

at 840 G as a function of single photon detuning by changing the control laser

frequency ω1. We can see that maximum loss suppression occurs at ∆e “ 0, the

center of the absorption peak, validating the transition frequency measured for the

|v “ 37y Ñ |v1 “ 68y transition.

5.6 Measurement of three-body recombination loss near the narrow
Feshbach resonance

One of the main issues working near the narrow Feshbach resonance is the associ-

ated three-body recombination loss [59] at 543.2 G, Fig. 5.14. In fact, we use the

three-body loss at the narrow Feshbach resonance to identify the exact position of

the resonance. In this section, I will discuss about the measurement of three-body

loss near the narrow Feshbach resonance which we remove from all our loss spectra

presented in chapter 6 for clarity.

The three-body loss occurs in a two component |1y ´ |2y mixture when three
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particles, namely, |1y, |2y and either |1y or |2y, collide together. This results in the

formation of a |1y´|2y quasi-bound molecule, where the extra energy is carried away

by the third particle, resulting in atom loss. Since we typically wait for 2 s for our

B-field to stabilize, we loose approximately 75 % of the atoms near 543.2 G.
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Figure 5.14: Three-body recombination loss near the narrow Feshbach resonance
at 543.2 G. Atom fraction as a function of magnetic field B for a wait time of 2 s.
We remove this loss peak from all loss spectra near the narrow Feshbach resonance
by excluding the data points for clarity. Red solid line is guide to the eye.

Atom loss spectra due to three-body loss is shown in Fig. 5.14. The width of the

three-body loss peak as seen from Fig. 5.14 for a wait time of 2 s is approximately

0.4 G. This limits our ability to work within 0.4 G of the narrow Feshbach resonance.

This problem can be trivially eliminated if we can sweep our B-field quickly, in tens

of ms, and not wait 2 s, as all our optical control experiments are done in less than

25 ms. Since the three-body loss is not a fundamental limitation in our experiments,

but just a systematic error in all our data, we remove it from all our atom loss spectra

shown in chapter 6 by not including the corresponding data points.

In this chapter, I discussed the experimental setup for creating an ultracold gas

and for optically controlling interactions using closed channel EIT method. I also
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discussed the measurement of physical parameters of the gas such as its density and

temperature. Further, I discussed the determination of optical parameters such as

the Rabi frequencies, Ω1 and Ω2 and measurement of transition frequencies, ω1 and

ω2.

In the next chapter, I will discuss the experimental results for the two-field optical

control experiment and compare the experimental data with the continuum-dressed

state model.
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6

Results and Conclusion

In this chapter, I will discuss the experimental demonstration of our two-field optical

method to control a magnetic Feshbach resonance and suppress spontaneous scat-

tering through destructive quantum interference. I will show optically induced atom

loss spectra near narrow and broad Feshbach resonances. Furthermore, I will fit our

data using the continuum-dressed state model and demonstrate the validity of our

new theoretical model for both broad and narrow Feshbach resonances.

Fig. 6.1 shows the basic level scheme for the two field optical method. An optical

field with frequency ω1 and Rabi frequency Ω1 couples the ground vibrational state

|g1y of the singlet 1Σ`g potential to the excited vibrational state |ey of the singlet

1Σ`u potential. A second optical field, with frequency ω2 and Rabi frequency Ω2

couples a lower lying ground vibrational state |g2y to the excited vibrational state

|ey. The control beam results in a light shift of state |g1y as well as atom loss due

to photoassociation from the triplet continuum |T, ky, which is hyperfine coupled to

|g1y and hence optically coupled to the excited state |ey. The ω2 beam suppresses

atom loss through destructive quantum interference. In a magnetic field B, the

triplet continuum |T, ky tunes downward 9 2µB B, where µB is the Bohr magneton,
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µB{h » hˆ1.4 MHz/G. The hyperfine coupling VHF between |T, ky and |g1y produces

a Feshbach resonance. For our experiments with 6Li, |g1y and |g2y are the v “ 38 and

v “ 37 ground vibrational states. We choose the excited state |ey to be v1 “ 68 as it

has the best Franck-Condon overlap with the v “ 38 ground vibrational state [67].

The excited state decays at a rate γe “ 2π ˆ 11.8 MHz.

Figure 6.1: Basic level scheme for closed-channel EIT technique. Optical fields of
frequencies ω1 (detuning ∆1) and ω2 (detuning ∆2), respectively, couple two singlet
ground molecular states |g1y and |g2y to the singlet excited molecular state |ey; VHF
is the hyperfine coupling between the incoming atomic pair state in the open triplet
channel |T, ky and |g1y, which is responsible for a magnetically controlled Feshbach
resonance.

The detunings of the optical fields that couple state |g1y and |g2y to |ey are ∆1

and ∆2, respectively. The single photon detuning of the ω1 beam for the |T, ky Ñ |ey

transition is a function of magnetic field and can be defined at a reference magnetic

field Bref as ∆e “ ∆L ´ 2µBpB ´ Bref q{~, where ∆L is the detuning of the optical

field when B “ Bref . The two-photon detuning for the |T, ky ´ |ey ´ |g2y system is

δ “ ∆e ´∆2.
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Figure 6.2: Single-field loss spectra near the narrow Feshbach resonance (top) with
the three body loss peak and (bottom) three body loss peak removed. The position
of the three body loss peak (vertical dashed line) is the position of the original narrow
Feshbach resonance at Bres “ 543.2 G. The ω1 field light shifts the position of the
narrow Feshbach resonance to B1res “ 541.0 G illustrated by the narrow loss peak.
The large loss peak on the right arises from the broad resonance. Pulse duration
τ “ 5.0 ms; T “ 5.4µK; ∆L “ ∆1 “ 30.2 MHz; Ω1 “ 2.65 γe; γe “ 2π ˆ 11.8 MHz.

6.1 Shifting the narrow Feshbach resonance using a single-optical field

In this section, I demonstrate that the narrow Feshbach resonance at 543.2 G is

shifted using a single optical field. I will show optically induced atom loss spectra

as a function of magnetic field to illustrate that by applying the ω1 field, the narrow

Feshbach resonance is shifted from its original position at 543.2 G. The ω2 optical

field is turned off for this experiment.
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Figure 6.3: Level scheme for the single-field optical experiment near the narrow
Feshbach resonance. (left) Loss due to broad Feshbach resonance from the |T, ky Ñ
|ey transition. (right) Loss due to narrow Feshbach resonance from the shifted narrow
Feshbach resonance state |g̃n1 y Ñ |ey transition.

Fig. 6.3 shows the level scheme for the single-field experiment near the narrow

Feshbach experiment. Note that near the narrow Feshbach resonance at 543.2 G,

optically induced atom loss occurs due to both the broad Feshbach resonance and

the narrow Feshbach resonance. The narrow singlet state |gn1 y is responsible for the

narrow Feshbach resonance. The broad singlet state |gb1y is mixed with the triplet

continuum |T, ky and is not shown in Fig. 6.3

As we are working near the narrow Feshbach resonance, we perform evaporative

cooling at 300 G. After forced evaporation at 300 G, the magnetic field is swept to

the field of interest and allowed to stabilize for » 2 sec. Then the control field ω1

illuminates the atoms for 5 ms. Atoms are then imaged at the field of interest after

a time of flight of 150µs to determine the density profile and the atom number.

The detuning of the control field for the |T, ky Ñ |ey is ∆L “ 30.2 MHz, with

∆L ” 0 for B “ Bref “ 543.2 G. The detuning ∆1 for the |gn1 y Ñ |ey transition is

∆1 “ ∆L “ 30.2 MHz.
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Fig. 6.2 shows the single field atom loss spectra versus magnetic field. The atom

loss spectra exhibit three loss peaks:

i) A loss peak at 543.2 G (vertical dotted line) due to three-body recombination loss

(see section 5.6). The three-body loss peak occurs at the position of the narrow

Feshbach resonance as we wait for 2 s for the B-field to stabilize. We remove the

three-body loss peak from all our data for clarity. Fig. 6.2 (bottom) is the same plot

as Fig. 6.2 (top) with the three-body loss peak removed.

ii) A narrow peak below 543.2 G. The corresponding level scheme for the loss tran-

sition is shown in Fig. 6.3 (right). The ω1 optical field detuned from the |gn1 y Ñ |ey

transition by ∆1 “ ∆L “ 30.2 MHz light shifts the narrow singlet state |gn1 y result-

ing in a shifted narrow singlet state |g̃n1 y. Atom loss occurs as the magnetic field

tunes the triplet continuum near |g̃n1 y, which is light-shifted in energy, and hence in

magnetic field from Bres “ 543.2 G to B1res “ 541.0 G. Therefore the net shift in the

narrow Feshbach resonance is

B ´B1res “ 543.2´ 541.0 “ 2.2 G

The shift in units of frequency is

Σopt “
2µB pBres ´B

1
resq

~
“ 6.16 MHz

In this case, the transition strength is resonant, while the ω1 optical field is off-

resonant with the |T, ky Ñ |ey transition by ∆L “ 30.2 MHz.

iii) A broad peak arises at 554 G. The corresponding level scheme for the loss tran-

sition is shown in Fig. 6.3 (right). Here the ω1 optical field is resonant with the

|T, ky Ñ |ey transition when the single photon detuning

∆e “ ∆L ´
2µBpB ´Bref q

~
“ 0.
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Since we choose ∆L “ 30.2 MHz, maximum atom loss for broad peak occurs at

B “ Bref `
∆L~
2µB

“ 543.2`
30.2

2.8
“ 554G.

The transition arises from the hyperfine coupling of the triplet continuum |T, ky to

broad singlet state |gb1y, far from the resonance at 832.2 G. Atom loss occurs due to

photoassociation of free unbound atom from |T, ky to the excited singlet vibrational

state |ey.

From Fig. 6.2, we can clearly see that the narrow Feshbach resonance is shifted

using a single optical field.

In order to investigate the dependence of the light shift on the Rabi frequency

Ω1, the experiment is repeated for different values of Ω1 by changing the intensity of

the ω1 laser.

Single field atom loss spectra versus magnetic field is shown in Fig. 6.4 for three

different values of Ω1, namely, Ω1 “ 2.00 γe (top), Ω1 “ 2.65 γe (middle), and Ω1 “

3.1 γe (bottom).

The new resonance position B1res and the corresponding light shift Σopt is listed

for three different values of Ω1 in Table. 6.1. We can see from Fig. 6.4, as Ω1 in-

creases, the shift becomes larger due to increased mixing of |gn1 y with |ey. Increasing

Ω1 also reduces the amount of singlet ground state character in the shifted state

|g̃n1 y, thereby reducing the overlap xT, k|g̃n1 y, resulting in reduced loss at the shifted

narrow peak. For a Ω1 “ 3.1γe (Fig. 6.4 bottom), the narrow resonance is shifted by

3.0 G, approximately 30 times the width.
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Figure 6.4: Shifting the narrow Feshbach resonance at 543.2 G using a single
optical field. The large loss peak on the right arises from the broad resonance;
The left loss peak arises from the shifted narrow resonance. Vertical dashed line:
Position of the unshifted narrow resonance. The background (non-optical) three-
body loss near 543.2 G has been suppressed for clarity. Pulse duration τ “ 5.0 ms;
T “ 5.4µK; ∆L “ ∆1 “ 30.2 MHz; (top) Ω1 “ 2.00 γe; B

1
res “ 541.9 G (middle)

Ω1 “ 2.65 γe; B
1
res “ 541.0 G (bottom) Ω1 “ 3.10 γe; B

1
res “ 540.2 G; γe “ 2π ˆ 11.8

MHz. Blue dots: Experiment; Solid red curves: Continuum-dressed state model
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Table 6.1: Single-field shift of narrow Feshbach resonance

Ω1pγeq Bres1 (G) B1res ´BrespGq Σopt(MHz)

2.00 541.9 1.3 3.64

2.65 541.0 2.2 6.16

3.10 540.2 3 8.40

6.2 Comparison of single-field loss data with the continuum-dressed
state model near the narrow Feshbach resonance

We use the continuum-dressed state model (solid red line) to fit the data shown in

Fig. 6.4 using Eq. 4.44 in chapter 4,

Nptq

N0

“
1

1`N0Γt
, (6.1)

where Γ is given in Eq. 4.42.

As discussed in section 5.6, for the Rabi frequency Ω1, we use

Ω1 “ 2π ˆ c1 MHz
?
I,

where intensity I “ 2P {πω0 in mW/mm2 is determined by measuring the power P

and the beam waist ω0. The continuum-dressed state model simultaneously repro-

duces the shift of the narrow resonances and the amplitudes of both the narrow and

broad resonances using only one fitting parameter c1 for all three spectra in Fig. 6.4.

We obtain a value of

Ω1 “ 2π ˆ 5.1 MHz
?
I,

which is in good agreement with the predicted value of

Ω1 “ 2π ˆ 5.6 MHz
?
I,

using the Franck-Condon factors, based on the vibrational wave functions obtained

from the molecular potentials [67].
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Figure 6.5: Level scheme for EIT loss suppression near the narrow Feshbach
resonance at (left) the broad peak and (right) the narrow peak.

As the shift depends on Ω2
1 while the magnitudes of the loss rates depend on the

product Ω2
1 |xg1|Eky|

2, the good agreement in the shape of the spectra confirms the

transition strengths and momentum-dependent shifts predicted by the continuum-

dressed state model.

This is one of the important results reported in this thesis, as it substantiates the

validity of the continuum-dressed model to make predictions of two-body scattering

parameters in optical control experiments.

6.3 Two-field loss suppression near the narrow Feshbach resonance

In this section, we employ two field optical method and demonstrate that the nar-

row Feshbach resonance is shifted while suppressing spontaneous scattering using

destructive quantum interference. I will show loss suppression spectra near a narrow

Feshbach resonance as a function of magnetic field to illustrate both the shift of

narrow Feshbach resonance and loss suppression at the shifted position. In order to

170



suppress atom loss due to spontaneous scattering, we apply a second optical field,

with frequency ω2 and Rabi frequency Ω2. The primary objective of this experiment

is to suppress atom loss at the shifted narrow Feshbach resonance position.

After sweeping to the magnetic field of interest, the ω2 beam of intensity of 0.4

kW/cm2 is adiabatically turned on over 30 ms. The ω2 beam creates an optical dipole

trap and provides additional confinement in the z-direction, due to its high intensity.

This changes the axial trap frequency from 120 Hz to 218 Hz (see section. 5.3.2),

with negligible change in the radial trap frequencies. The control beam (ω1) with

Rabi frequency Ω1 “ 2.6 γe is then turned on for 5 ms, after which both beams are

turned off abruptly.

The level scheme for loss suppression near the narrow Feshbach resonance is

shown in Fig. 6.5. The detuning ∆2 of the ω2 beam for the |g2y Ñ |ey transition can

be chosen to suppress loss either at the broad peak (Fig. 6.5 (left)) or the narrow

peak (Fig. 6.5 (right)).

Fig. 6.6 show loss suppression spectra near the narrow Feshbach resonance as a

function of the magnetic field. The ω1 beam shifts the narrow Feshbach resonance

from from Bres “ 543.2 G (vertical dashed line) to B1res “ 541.1 (narrow loss peak)

(Fig. 6.6 (top)). Loss suppression occurs when the two-photon resonance condition

is satisfied i.e., the two-photon detuning

δe “ ∆2 ´∆e “ 0.

Note that the condition δe “ 0 can be achieved either by having both ∆2 and ∆e “ 0

or by having ∆2 “ ∆e.

Loss suppression at the broad peak (Fig. 6.6 (top)) occurs when

∆2 “ ∆e “ 0.

However, this is not interesting as our original goal is to suppress atom loss at the

shifted narrow peak at 541.1 G.
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Figure 6.6: Loss suppression using the two-field optical technique. The ω1 beam
shifts the narrow Feshbach resonance and the frequency of the ω2 beam is chosen to
suppress loss from (top) the broad resonance (middle) the shifted narrow Feshbach
resonance; (bottom) shows an expanded view of (middle) near the loss suppression
region. Pulse duration τ “ 5.0 ms; T “ 4.5µK; Ω1 “ 2.6 γe; Ω2 “ 0.8 γe; ∆L “ ∆1 “

30.2 MHz; B1res “ 541.1 G. Vertical dashed line: Position of the unshifted narrow
resonance. Solid red curves: Continuum-dressed state model.
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Loss suppression at the shifted narrow peak (Fig. 6.6 (middle)) occurs when

∆2 “ ∆e “ ∆1 ` Σopt.

“ ∆1 ` 2µB p543.2´B1resq.

“ 30.2` 2.8 p543.2´ 541.1q “ 36.0 MHz (6.2)

Fig. 6.6 (bottom) shows the same data in Fig. 6.6 (middle), expanded around the

loss suppression region. Fig. 6.6 (bottom) clearly shows that atom loss is suppressed

at the shifted narrow Feshbach resonance.

As noted in chapter 4 (section. 4.4.2), closer examination of loss suppression of

the narrow peak Fig. 6.6 (bottom) reveals a rich spectrum, where we can see a three-

peak structure. Unlike a simple loss suppression at the broad peak, where the loss

suppression spectra has a minimum loss region in the center of two absorption maxi-

mum, we notice an additional peak (center narrow peak). This additional absorption

peak arises due to two-photon Raman absorption from the broad Feshbach resonance

when the condition δe “ 0 is satisfied for the case, ∆2 ą 2γe (see. section. 4.4.2).

For this experiment, ∆2 “ 36.0 MHz (Eq. 6.2) which is greater than 2 γe.

6.4 Comparison of two-field loss suppression data with the continuum-
dressed state model near the narrow Feshbach resonance

We use the continuum-dressed state model (solid red line) to fit the data shown in

Fig. 6.6. Similiar to section. 6.2, for the Rabi frequencies Ω1 and Ω2, we use

Ω1 “ 2π ˆ c1 MHz
a

I1,

Ω2 “ 2π ˆ c2 MHz
a

I2,

where intensity I1 “ 2P1{πω0 and I2 “ 2P2{πω0 are the intensities of the ω1 field

and ω2 field in mW/mm2, respectively. The continuum-dressed state model simul-

taneously reproduces the shift of the narrow resonance and the amplitudes of both
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the narrow and broad resonances by fitting c1 and c2. We obtain a value of

Ω1 “ 2π ˆ 5.45 MHz
a

I1,

Ω2 “ 2π ˆ 0.14 MHz
a

I2,

which is in good agreement with the predicted value of

Ω1 “ 2π ˆ 5.6 MHz
a

I1, (6.3)

Ω2 “ 2π ˆ 0.17 MHz
a

I2,

using the Franck-Condon factors, based on the vibrational wave functions obtained

from the molecular potentials [67].

The better agreement of c1 “ 5.45 to the predicted value of 5.6 compared to pre-

vious data sets (c1 “ 5.10), might be due to the better alignment of the control laser

(ω1) beam on the atoms. The continuum-dressed state model fits the data both in

shape and magnitude. We note that the predicted central peaks in Fig. 6.6 (bottom)

are somewhat larger than the measured values, which may arise from frequency jitter

in the two-photon detuning and intensity variation of the Ω2 beam across the atom

cloud. Furthermore, the continuum-dressed state model also predicts the additional

peak in the loss suppression spectra of the narrow peak Fig. 6.6 (bottom) that arises

due to two-photon Raman absorption from the broad Feshbach resonance.

The loss spectra clearly demonstrates that the Feshbach resonance is strongly

shifted by 2 G and that atom loss is strongly suppressed using our two field optical

method. This is one of the primary results of my research work as it demonstrates

for the first time, both control of interactions and loss suppression in a ultracold gas

using optical techniques.
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Figure 6.7: Level scheme for loss suppression near the broad Feshbach resonance
at 840 G

6.5 Two-field loss suppression near broad Feshbach resonance

Loss suppression near a Broad Feshbach resonance in 6Li is particularly difficult due

to the large background scattering length of 1405 a0. Note that the two body loss

rate constant K2 derived in chapter 4, Eq. 4.11 is proportional to the background

scattering length abg. Therefore, two-body loss is higher for atoms with large back-

ground scattering length abg such as 6Li. In this section, I will discuss two field optical

experiments that demonstrates loss suppression near the broad Feshbach resonance.

I will show loss suppression spectra near the broad Feshbach resonance as a function

of the single-photon detuning ∆e by changing the control laser frequency ω1.

Fig. 6.7 show the level scheme for the two field optical experiment near the broad

Feshbach resonance. Similar to loss suppression near the narrow Feshbach resonance,

we use two optical fields, ω1 and ω2, to suppress loss due to destructive quantum

interference. Near the broad Feshbach resonance, there is no contribution from the

narrow Feshbach resonance state |gn1 y
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Since we are working near the broad Feshbach resonance, we sweep the magnetic

field to 832 G to perform evaporative cooling. After forced evaporation, and re-

raising the trap to its initial trap depth, we have about 105 atoms in each spin state.

The magnetic field is then swept to the field of interest where we typically wait for

about 2 s for the magnetic field to stabilize. The ω2 beam of intensity 0.4 kW/cm2

is adiabatically turned on over 30 ms. The ω1 beam is then turned on for 5 ms, after

which both beams are turned off abruptly.

Fig. 6.8 show loss suppression near the broad Feshbach resonance at 840 G as a

function of single photon detuning by changing the control laser frequency ω1.
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Figure 6.8: Two-field optical loss suppression near the broad Feshbach resonance.
Atom loss spectra as a function of single photon detuning ∆e by changing the control
laser frequency ω1 at a fixed magnetic field B “ 840 G. The detuning ∆2 of the EIT
beam for the |g2y ´ |ey transition is ∆2 “ 10 MHz. Loss suppression ocuurs when
the two-photon resonance condition δe “ ∆2´∆e “ 0 is satisfied i.e., ∆e “ 10 MHz.
Temperature T = 14.8 µK, Ω1 “ 1.34 γe, and Ω2 “ 0.9 γe. Each data point is the
average of 5 randomized trials. Solid red curves: Continuum-dressed state model.

We chose the detuning ∆2 of the ω2 beam for the |g2y ´ |ey transition to be

∆2 “ 10 MHz. Loss suppression occurs when the frequency of the control laser ω1

is tuned such that the two-photon detuning δe “ ∆e ´∆2 “ 0. For this experiment,
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since ∆2 “ 10 MHz, the maximum suppression occurs for ∆e “ ∆2 “ 10 MHz.

Fig. 6.8 clearly illustrates that the two field optical experiment can suppress atom

loss even near a broad Feshbach resonance with a large background scattering length.

6.6 Comparison of two-field loss suppression data with the continuum-
dressed state model near the broad Feshbach resonance

We use the continuum-dressed state model (solid red line) to compare the data shown

in Fig. 6.8. As discussed in section. 6.4, for the Rabi frequencies Ω1 and Ω2, we use

Ω1 “ 2π ˆ c1 MHz
a

I1,

Ω2 “ 2π ˆ c2 MHz
a

I2,

where intensity I1 “ 2P1{πω0 and I2 “ 2P2{πω0 are the intensities of the ω1 field

and ω2 field in mW/mm2, respectively. We obtain a value of

Ω1 “ 2π ˆ 5.10 MHz
a

I1,

Ω2 “ 2π ˆ 0.14 MHz
a

I2,

which is in good agreement with the predicted value of

Ω1 “ 2π ˆ 5.6 MHz
a

I1, (6.4)

Ω2 “ 2π ˆ 0.17 MHz
a

I2,

using the Franck-Condon factors, based on the vibrational wave functions obtained

from the molecular potentials [67]. Further, the the value of c1 obtained by fitting the

continuum dressed state model with this data set is consistent with the value obtained

from the single-field experiment near the narrow Feshbach resonance (section. 6.1 ).
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Figure 6.9: Number of atoms in state |1y versus time with Ω1 “ 0.65 γe and ω1

tuned to cause loss at 841 G. Ω2 “ 0.9 γe and ω2 is tuned to suppress loss near
841 G. With Ω1 “ 0.65 γe and Ω2 “ 0, the corresponding decay time is » 0.5 ms.
γe “ 2π ˆ 11.8 MHz is the radiative decay rate; T “ 4.5µK. Solid green curve:
Nptq “ Np0q{p1` γtq, where γ “ 2.5 s´1.

6.7 Increasing the spontaneous lifetime of atoms near the broad
Feshbach resonance

To examine the loss suppression further, we measure the number of atoms as a

function of time with the magnetic field tuned to the suppression point. Fig. 6.9

shows the atom fraction as a function of time at the two-photon resonance. Each

data point in Fig. 6.9 is obtained by setting the lasers to achieve the two-photon

condition at 841 G and then sweeping the magnetic field by about ˘2 G to observe

the maximum retrieval fraction. The magnetic field is swept in order to overcome

the fluctuations in the magnetic field which can limit the lifetime of the atoms.

The green curve is a fit of the form Nptq “ Np0q{p1 ` γtq, where γ “ 2.5 s´1.

We observe dramatic suppression of loss using the two-field method, achieving an

increase of the inelastic lifetime near the broad resonance of 6Li from 0.5 ms with a
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single laser field to 400 ms with the two-field method, despite the large background

scattering length of ´1405 a0 [69, 70] (Fig. 6.9).

The increase in inelastic lifetime from 5 ms to 400 ms is one of the central achieve-

ments of our closed-channel EIT technique, as it demonstrates for the very first time,

the feasibility of using optical techniques to control interactions in the timescale of

several hundred milliseconds (Fig. 6.9).

6.8 Summary and future experiments

In summary, I have demonstrated new two-field optical techniques, which use quan-

tum interference in the closed-channel to control interactions in an ultracold gas of

6Li atoms. I further illustrated, using our new theoretical model, the advantages

of the closed channel EIT method over other optical control methods. One of the

major advantages of the closed-channel EIT is the ability to create narrow features

in the scattering phase shift enabling large changes in the scattering length with

small changes in the optical frequencies. This avoids changes in the net trapping

potential on the atoms. Another major advantage of our two-field optical technique

is the ability to tune the effective range with minimum atom loss. I also illustrated

that near the broad |1y ´ |2y Feshbach resonance of 6Li, the effective range can be

changed by a factor of 40 at the minimum loss two-photon resonance.

I have experimentally demonstrated loss suppression and increase in the spon-

taneous lifetime of atoms from 0.5 ms using single field to 400 ms using two fields

near the broad Feshbach resonance despite a huge background scattering length of

´1450 a0. I would like to particularly emphasize that this is the very first demonstra-

tion of loss suppression in a broad Feshbach resonance. This illustrates the versatile

nature of our technique to suppress optical scattering even in the case of very broad

Feshbach resonances.

I have demonstrated that the narrow Feshbach resonance can be shifted by 3 G,
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nearly 30 times the width of the resonance and the loss strongly suppressed using

the closed-channel EIT technique. This is the first demonstration of loss suppression

on a Feshbach resonance that is shifted by 2 G.

Furthermore, I have developed a new theoretical model, the continuum-dressed

state model, which provides a unified treatment of both broad and narrow Feshbach

resonances, resolving a long standing issue for predictions for broad resonances. I

further demonstrated that the continuum-dressed state model accurately reproduces

all of the light induced level shifts, and the amplitudes, for both the narrow and

broad resonances.

The closed-channel EIT method reported in this thesis is an important step for-

ward in using optical techniques to control interactions in ultracold gases as it pro-

vides a general prescription to suppress atom loss due to spontaneous scattering.

The results presented in this thesis illustrate that loss can be suppressed near any

Feshbach resonance, independent of its width, which is a serious shortcoming in other

optical techniques.

One of the possible improvements for this method is to achieve loss suppression

using an less intense EIT beam that does not create a dipole trapping potential. This

can be accomplished by choosing the state |v1 “ 62y as the excited singlet molecular

state |ey, since it has a better Franck-Condon overlap with the |v “ 37y state.

The next major step using this technique would be the experimental measurement

of tuning the scattering length and the effective range by measuring the binding

energy using radio frequency spectroscopy. The frequency “knob” provided by the

closed-channel EIT technique to tune interactions can be used to create exotic atomic

clouds with spatially selective regions of strong interactions. The possibilities remain

unlimited and I hope that my work presented here will propel this field forward.
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Appendix A

Evaluation of phase shift ∆ due to magnetic
Feshbach resonance

We use Eq. 2.57 to write the total phase shift due to a magnetic Feshbach resonance

∆ “ ∆̃` δbg, (A.1)

where ∆̃ is the phase shift induced by the magnetic Feshbach resonance and δbg is

background phase shift.

For broad Feshbach resonances, where the effective range re is small, we can

ignore the k2 terms in the effective range expansion in Eq. 2.21 and write

tan δbg “ ´k abg (A.2)

For abg ă 0, we rewrite Eq. A.2

tan δbg “ ´k abg “ k|abg| “ x (A.3)

tan ∆̃ “ ´
2 π2mk |g̃pkq|2

Ek ´ Eg1 ´ ΣEpkq
“

´k|abg|

´∆̃0pxq ´
x2

1`x2

1

1` x2
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From Eq. 2.53, we know

tan ∆̃ “ ´
2π2mk |g̃pkq|2

Ek ´ Eg1 ´ ΣEpkq
. (A.4)

From Eq. 2.169 and Eq. 2.174, we know

ΣEpkq “ ´
2π2m |g̃pkq|2

|abg|
“ ´

2µB ∆B

1` x2
. (A.5)

From Eq. 2.178, we know

Ek ´ Eg1 ´ ΣEpkq “ 2µB ∆B

„

´∆̃0 ` εx
2
´

x2

1` x2



. (A.6)

Substituting Eq. A.5 and Eq. A.6 in Eq. A.4, we obtain

tan ∆̃ “
´k|abg|

´∆̃0 ` εx2 ´ x2

1`x2

1

1` x2
. (A.7)

From Eq. 2.179, we know

∆̃0pxq ” ∆̃0 ´ εx
2. (A.8)

Substituting Eq. A.8 in Eq. A.7, yields

tan ∆̃ “
´k|abg|

´∆̃0pxq ´
x2

1`x2

1

1` x2
. (A.9)

Using x “ k|abg| in Eq. A.9,

tan ∆̃ “
x

p1` x2q∆̃0pxq ` x2
“

x

∆̃0pxq ` x2r1` ∆̃0pxqs
. (A.10)

We write the phase shift ∆̃ in the form

ei∆̃ “ cos ∆̃` i sin ∆̃

“ cos δbgr1` i tan δbgs

“
1` i tan ∆̃
a

1` tan2 ∆̃
(A.11)
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Substituting Eq. A.10 in Eq. A.11, we obtain

ei∆̃ “
1` ix

∆̃0pxq`x2r1`∆̃0pxqs
b

1` x2

p∆̃0pxq`x2r1`∆̃0pxqsq2

(A.12)

Simplifying Eq. A.12, yields

ei∆̃ “
∆̃0pxq ` x

2r1` ∆̃0pxqs ` ix
b

p∆̃0pxq ` x2r1` ∆̃0pxqsq2 ` x2

(A.13)

Similiarly, for the backround phase shift δbg, we write

eiδbg “ cos δbgr1` i tan δbgs (A.14)

Substituting Eq. A.3 in Eq. A.14, yields

eiδbg “
1` ix
?

1` x2
(A.15)

Using Eq. A.1, we write

ei∆ “ eip∆̃`δbgq “ ei∆̃ eiδbg (A.16)

Substituting Eq. A.13 and Eq. A.15 in Eq. A.16, we obtain

ei∆ “
∆̃0pxq ` x

2r1` ∆̃0pxqs ` ix
b

p∆̃0pxq ` x2r1` ∆̃0pxqsq2 ` x2

1` ix
?

1` x2
“
N

D
, (A.17)

where N is the numerator and D is the denominator of Eq. A.17, respectively. We

reduce the numerator N and denominator D of Eq. A.17 separately. From the

numerator of Eq. A.17, we get

N “ p1` ixq
“

∆̃0pxq ` x
2
r1` ∆̃0pxqs ` ix

‰

“ ∆̃0pxq ` x
2
r1` ∆̃0pxqs ` ix` ix

“

∆̃0pxq ` x
2
r1` ∆̃0pxqs ` ix

‰

“ p1` x2
q∆̃0pxq ` ix

“

1` ∆̃0pxq ` x
2
r1` ∆̃0pxqs

‰

“ p1` x2
q
“

∆̃0pxq ` ixr1` ∆̃0pxqs
‰

(A.18)
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From the denominator of Eq. A.17, we get

D “
?

1` x2

b

p∆̃0pxq ` x2r1` ∆̃0pxqsq2 ` x2

“

b

|1` ix|2 |p∆̃0pxq ` x2r1` ∆̃0pxqsq2 ` ix|2

“
a

|N |2 “ p1` x2
q

b

∆̃2
0pxq ` x

2r1` ∆̃0pxqs2 (A.19)

Substituting, Eq. A.19 and Eq. A.18 in Eq. A.17, we obtain

ei∆ “
p1` x2q

“

∆̃0pxq ` ixr1` ∆̃0pxqs
‰

p1` x2q

b

∆̃2
0pxq ` x

2r1` ∆̃0pxqs2
. (A.20)

Cancelling the term p1` x2q in the numerator and denominator,

ei∆ “

“

∆̃0pxq ` ixr1` ∆̃0pxqs
‰

b

∆̃2
0pxq ` x

2r1` ∆̃0pxqs2
“ cos ∆` i sin ∆. (A.21)

From Eq. A.21, we obtain

cos ∆ “
∆̃0pxq

b

∆̃2
0pxq ` x

2r1` ∆̃0pxqs2
, (A.22)

and

sin ∆ “
xr1` ∆̃0pxqs

b

∆̃2
0pxq ` x

2r1` ∆̃0pxqs2
. (A.23)

Dividing Eq. A.22 by Eq. A.23, we obtain

x cot ∆ “
∆̃0pxq

1` ∆̃0pxq
. (A.24)

Using Eq. A.8 in Eq. A.24, yields

x cot ∆ “
∆̃0 ´ εx

2

1` ∆̃0 ´ εx2
. (A.25)
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We use Eq. A.25 to evaluate the total phase shift induced by the magnetic Feshbach

resonance.

From Eq. 2.144 and Eq. 2.184, we know

xg1|Ẽky “

c

ε|abg|3

2π2

1
b

r∆̃0pxqs2 ` x2r1` ∆̃0pxqs2
. (A.26)

From Eq. A.20 and Eq. A.26, we get

ei∆ xg1|Ẽky “
ε|abg|

3

2π2

∆̃0pxq ` ixr1` ∆̃0pxqs

∆̃2
0pxq ` x

2r1` ∆̃0pxqs2
. (A.27)

Using Mathematica, we find that Eq. A.27 has no poles on the real axis.
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Appendix B

Evaluation of contour integral for solving ĨbEk near
the broad Feshbach resonance

x'

y'

iq

C

x- x

*

Figure B.1: Contour Integral for Ipq, xq

From Chapter 3 Eq. 3.98, we have

lim
εÑ0

ĨbEk “
θp1` ∆̃0q

π
P

ż 8

´8

dx1

x12 ´ x2

x12

∆̃2
0 ` p1` ∆̃0q

2 x12
. (B.1)

We write

Ip∆̃0, xq ” P

ż

dx1

px12 ´ x2q

x12

∆̃2
0 ` p1` ∆̃0q

2 x12
. (B.2)
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Rewriting Eq. B.2,

Ip∆̃0, xq “
1

p1` ∆̃0q
2
P

ż

dx1

px12 ´ x2q

x12

∆̃2
0

p1`∆̃0q2
` x12

.

“
1

p1` ∆̃0q
2
I1p∆̃0, xq, (B.3)

where

I1p∆̃0, xq “ P

ż

dx1

px12 ´ x2q

x12

∆̃2
0

p1`∆̃0q2
` x12

. (B.4)

We define

q2
”

∆̃2
0

p1` ∆̃0q
2
. (B.5)

Substituting Eq. B.5 in Eq. B.4,

I1p∆̃0, xq “ P

ż

dx1

px12 ´ x2q

x12

q2 ` x12
“ Ipq, xq (B.6)

We use the contour integral method to solve Ipq, xq. As illustrated in Fig. B.1,

we choose our contour to enclose the upper half plane. Then, from Cauchy’s residual

theorem, we have

Ipq, xq ´ πiResp´xq ´ πiRespxq “ 2πiRespiqq. (B.7)

The residue for the pole on the real axis x1 “ ´x is

Resp´xq “
x12 px1 ` xq

px1 ` xq px1 ´ xq px12 ` q2q

ˇ

ˇ

ˇ

ˇ

x1Ñ´x

“ ´
x2

2x px2 ` q2q
. (B.8)
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The residue for the pole on the real axis x1 “ x is

Respxq “
x12 px1 ´ xq

px1 ` xq px1 ´ xq px12 ` q2q

ˇ

ˇ

ˇ

ˇ

x1Ñx

“
x2

2x px2 ` q2q
. (B.9)

The residue for the enclosed pole on the imaginary axis x1 “ iq is

Ipq, xq “ 2πiRespiqq

“ 2πi
x12 px1 ´ iqq

px1 ` iqq px1 ´ iqq px12 ` x2q

ˇ

ˇ

ˇ

ˇ

x1Ñiq

“ 2πi
piqq2

2iq rpiqq2 ` x2s
“

πq

x2 ` q2
. (B.10)

Substituting Eq. B.8, Eq. B.9, and Eq. B.10 in Eq. B.7, we obtain

Ipq, xq “
πq

x2 ` q2
(B.11)

From Eq. B.5, we have

q “
|∆̃0|

|1` ∆̃0|
(B.12)

Substituting Eq. B.12 in Eq. B.11,

Ipq, xq “
π|∆̃0|

|1` ∆̃0|

1

x2 `
∆̃2

0

p1`∆̃0q2

. (B.13)

Using Eq. B.13 and Eq. B.6 in Eq. B.4, yields

Ip∆̃0, xq “
π|∆̃0|

|1` ∆̃0|

1

∆̃2
0 ` x

2 p1` ∆̃0q
2
. (B.14)

Finally, substituting Eq. B.14 in Eq. B.1, we obtain

lim
εÑ0

ĨbEk “
|∆̃0|

|1` ∆̃0|

θp1` ∆̃0q

∆̃2
0 ` p1` ∆̃0q

2 x2
. (B.15)
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[67] R. Côté and A. Dalgarno. Mechanism for the production of 6Li2 and 7Li2 ultra-
cold molecules. J. Mol. Spectr., 195:236, 1999.

[68] Mariusz Semczuk, Will Gunton, William Bowden, and Kirk W. Madison.
Anomalous behavior of dark states in quantum gases of 6Li. Phys. Rev. Lett.,
113:055302, 2014.

[69] G. Zürn, T. Lompe, A. N. Wenz, S. Jochim, P. S. Julienne, and J. M. Hutson.
Precise characterization of 6Li Feshbach resonances using trap-sideband-resolved
rf spectroscopy of weakly bound molecules. Phys. Rev. Lett., 110:135301, 2013.

[70] M. Bartenstein, A. Altmeyer, S. Riedl, R. Geursen, S. Jochim, C. Chin, J. Hecker
Denschlag, R. Grimm, A. Simoni, E. Tiesinga, C. J. Williams, and P. S. Juli-
enne. Precise determination of 6Li cold collision parameters by radio-frequency
spectroscopy on weakly bound molecules. Phys. Rev. Lett., 94:103201, 2005.

194



Biography

Arunkumar Jagannathan was born July 2, 1984, in Madras, India. He earned is B.E

degree in electronics and communication engineering from Anna University, India.

He earned his M.S. in Physics from University of Massachusetts Lowell. His master’s

research focussed on using terahertz optical techniques to study scattering from rough

surfaces. He joined the group of Dr. John Thomas at Duke University in 2010, where

he was involved in performing experiments for optically controlling interactions in

strongly interacting Fermi gases.

195


	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	1 Introduction
	1.1 Magnetic Feshbach resonances in ultracold atoms
	1.2 Why do we need optical control of interactions?
	1.3 Optical control of interactions in ultracold atoms
	1.4 Advantages of our two-field optical methods
	1.5 Dissertation organization

	2 Theory of Collisional Feshbach Resonances
	2.1 Feshbach resonance in 6Li
	2.2 Continuum-dressed state treatment of Feshbach resonance
	2.3 Dressed continuum state |Ek"5979B44 
	2.3.1 Magnetic Feshbach resonance induced phase shift 
	2.3.2 Zero energy scattering length a
	2.3.3 Effective range re

	2.4 Dressed bound state |E"5979B44 
	2.5 Properties of dressed states |E"5979B44  and |Ek"5979B44 
	2.5.1 Orthogonality of |E"5979B44  and |Ek"5979B44 
	2.5.2 Z(B) - Singlet character in dressed bound state |E"5979B44  
	2.5.3 C(B) - Total probability of |g1"5979B44  to be in the dressed continuum 
	2.5.4 Z(B) and C(B) near the broad and narrow Feshbach resonance in 6Li 
	2.5.5 Molecular binding energy Em

	2.6 Summary: Physical significance of the dressed states |E"5979B44  and |Ek"5979B44 
	2.6.1 Above Feshbach resonance - BCS side
	2.6.2 Below Feshbach resonance - BEC side


	3 Continuum-Dressed State Model
	3.1 Two-field optical method: Level scheme
	3.2 Bare-state basis and continumm-dressed state basis
	3.3 Optical control: Continuum-dressed basis
	3.3.1 Adiabatic approximation

	3.4 Scattering state wave function
	3.5 Evaluating the energy denominator D(E, EK)
	3.5.1 Dressed bound state shift IE
	3.5.2 Dressed continuum state shift IEK

	3.6 Evaluation of the optically induced phase shift 
	3.7 Evaluation of the total phase shift 

	4 Continuum-Dressed Model Predictions
	4.1 Two-body loss rate constant K2
	4.2 Procedure for calculating K2
	4.3 Two-body loss rate K2 near broad Feshbach resonance 
	4.3.1 Two-body loss rate K2 for different Rabi frequencies 2
	4.3.2 Two-body loss rate K2 vs Rabi frequency 1
	4.3.3 Two-body loss rate K2 vs ratio of Rabi frequencies 1/2
	4.3.4 Two-body loss rate K2 vs detuning 2 

	4.4 Two-body loss rate K2 near narrow Feshbach resonance
	4.4.1 Shift of the narrow Feshbach resonance vs Rabi frequency 1
	4.4.2 EIT loss suppression near narrow Feshbach resonance

	4.5 Zero energy scattering length a 
	4.5.1 Zero energy scattering length a near the broad Feshbach resonance
	4.5.2 Zero energy scattering length a near the narrow Feshbach resonance

	4.6 Effective range re
	4.7 Two-field optical method near the narrow Feshbach resonance
	4.8 Two-field optical method near the broad Feshbach resonance
	4.9 Evaluation of optically induced atom loss from K2

	5 Experimental Methods
	5.1 Laser cooling and trapping of atoms
	5.1.1 6 Li oven - Generating the atoms
	5.1.2 Zeeman slower and the ``slower" beam - Initial cooling
	5.1.3 Magneto-optical trap - Precooling
	5.1.4 Far off-resonance trap (FORT) - Evaporative cooling
	5.1.5 Imaging the atom cloud

	5.2 Experimental setup for two-field optical method
	5.2.1 Basic experimental setup
	5.2.2 Frequency stabilization of lasers using PDH lock
	5.2.3 Locking the FP cavity using iodine saturation absorption spectroscopy
	5.2.4 Frequency offset lock between the reference and the control laser
	5.2.5 Spectral filtering of optical fields
	5.2.6 Illuminating the atoms with optical fields

	5.3 Measurement of density and temperature of the atom cloud 
	5.3.1 Measurement of trap frequencies of atoms in a CO2 dipole trap 
	5.3.2 Measurement of the trap oscillation frequencies for the combined CO2 dipole and red trap 
	5.3.3 Measurement of temperature of the atom cloud
	5.3.4 Measurement of density of the atom cloud

	5.4 Determination of the Rabi frequencies
	5.5 Measurement of the transition frequencies
	5.6 Measurement of three-body recombination loss near the narrow Feshbach resonance

	6 Results and Conclusion
	6.1 Shifting the narrow Feshbach resonance using a single-optical field
	6.2 Comparison of single-field loss data with the continuum-dressed state model near the narrow Feshbach resonance
	6.3 Two-field loss suppression near the narrow Feshbach resonance
	6.4 Comparison of two-field loss suppression data with the continuum-dressed state model near the narrow Feshbach resonance
	6.5 Two-field loss suppression near broad Feshbach resonance
	6.6 Comparison of two-field loss suppression data with the continuum-dressed state model near the broad Feshbach resonance
	6.7 Increasing the spontaneous lifetime of atoms near the broad Feshbach resonance
	6.8 Summary and future experiments

	A Evaluation of phase shift  due to magnetic Feshbach resonance 
	B Evaluation of contour integral for solving Ekb near the broad Feshbach resonance 
	Bibliography
	Biography

